CHAPTER

Circles

KEY POINTS

1. A circle is a collection of all those points in a plane which are at a constant distance from a fixed point. The fixed point is called the centre and fixed distance is called the radius.
2. Secant: A line which intesects a circle in two distinct points is called a secant of the circle.

3. Tangent: It is a line that intersects the circle at only one point. The point where tangent touches the circle is called the point of contact.

Here A is the poin of contact.

4. Number of Tangent: Infinitely many tangents can be drawn on a circle.
5. Number of Secant: There are infinitely many secants which can be drawn on a circle.
6. The proofs of the following theorems can be asked in the examination:-
(i) The tangent at any point of a circle is perpendicular to the radius through the point of contact.
(ii) The lengths of tangents drawn from an external point to a circle are equal.
7. There is only one tangent at a point of the circle.
8. The tangent to a circle is a special case of the secant.
9. There is no tangent to a circle passing through a point lying inside the circle.
10. There is one and only one tangent to a circle passing through a point lying on the circle.
11. There are exactly two tangents to a circle through a point lying outside the circles.

VERY SHORT ANSWER TYPE QUESTIONS

1. In fig., $\Delta \mathrm{ABC}$ is circumscribing a circle. Find the length of BC .

Mathematics-X

2. The length of the tangent to a circle from a point P , which is 25 cm away from the centre, is 24 cm . What is the radius of the circle.
3. In fig., ABCD is a cyclic quadrilatreral. If $\angle \mathrm{BAC}=50^{\circ}$ and $\angle \mathrm{DBC}=60^{\circ}$, then find $\angle B C D$.

4. In figure, O is the centre of a circle, PQ is a chord and the tangent PR at P makes an angles of 50° with PQ . Find $\angle \mathrm{POQ}$.

5. If two tangents inclined at an angle 60° are drawn to a circle of radius 3 cm , then find the length of each tangent.
6. If radii of two concentric circles are 4 cm and 5 cm , then find the length of the chord of one circle which is tangent to the other circle.
7. In the given figure, PQ is tangent to outer circle and PR is tangent to inner circle. If $P Q=4 \mathrm{~cm}, O Q=3 \mathrm{~cm}$ and $Q R=2 \mathrm{~cm}$ then find the length of $P R$.

8. In the given figure, O is the centre of the circle, PA and PB are tangents to the circle then find $\angle \mathrm{AQB}$.
(CBSE 2016)

9. In the given figure, If $\angle \mathrm{AOB}=125^{\circ}$ then find $\angle \mathrm{COD}$.

10. If two tangent $T P$ and $T Q$ are drawn from an external point T such that $\angle \mathrm{TQP}=60^{\circ}$ then find $\angle \mathrm{OPQ}$.

11. How many tangents can a circle have?
12. A tangent to a circle intersects it in \qquad points.
13.

If PQ is a tangent then find the value of $\triangle \mathrm{POQ}+\boxed{\mathrm{QPO}}$.
Mathematics-X
14. Choose the correct Answer.

A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that $\mathrm{OQ}=12 \mathrm{~cm}$. Length PQ is :
(a) 12 cm
(b) 13 cm
(c) 8.5 cm
(d) $\sqrt{119} \mathrm{~cm}$ (NCERT)
15. A circle can have \qquad parallel tangents at the most.
(NCERT)
16. The common point of a tangent to a circle and the circle is called \qquad .
(NCERT)

SHORT ANSWER TYPE-I QUESTIONS

17. If diameters of two concentric circle are d_{1} and $d_{2}\left(d_{2}>d_{1}\right)$ and c is the length of chord of bigger circle which is tangent to the smaller circle. Show that $d_{2}^{2}=c^{2}+d_{1}^{2}$.
18. The length of tangent to a circle of radius 2.5 cm from an external point P is 6 cm . Find the distance of P from the nearest point of the circle.
19. $T P$ and $T Q$ are the tangents from the external point T of a circle with centre O. If $\angle \mathrm{OPQ}=30^{\circ}$ then find the measure of $\angle \mathrm{TQP}$.
20. In the given fig. $\mathrm{AP}=4 \mathrm{~cm}, \mathrm{BQ}=6 \mathrm{~cm}$ and $\mathrm{AC}=9 \mathrm{~cm}$. Find the semi perimeter of $\triangle \mathrm{ABC}$.

21. A circle is drawn inside a right angle triangle whose sides are a, b, c where c is the hypotenuse, which touches all the sides of the triangle. Prove $r=\frac{a+b-c}{2}$ where r is the radius of the circle.
(NCERT Exampler, 2012)
22. Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.
23. Prove that in two concentric circles the chord of the larger circle which is tangent to the smaller circle is bisected at the point of contact.
24. In the given Fig., AC is diameter of the circle with centre O and A is point of contact, then find x.

25. In the given fig. KN, PA and PB are tangents to the circle. Prove that:
$\mathrm{KN}=\mathrm{AK}+\mathrm{BN}$.

26. In the given fig. PQ is a chord of length 6 cm and the radius of the circle is 6 cm . TP and TQ are two tangents drawn from an external point T . Find $\angle \mathrm{PTQ}$.

SHORT ANSWER TYPE-II QUESTIONS

27. In the given figure find $\mathrm{AD}, \mathrm{BE}, \mathrm{CF}$ where $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\mathrm{AC}=10 \mathrm{~cm}$.

28. Two tangents PA and PB are drawn to a circle with centre O from an external point P. Prove that $\angle \mathrm{APB}=2 \angle \mathrm{OAB}$
(NCERT, Exemplar-2)

29. In the given fig. OP is equal to the diameter of the circle with centre O . Prove that $\triangle \mathrm{ABP}$ is an equilateral triangle.

30. In the given fig., find $P C$. If $A B=13 \mathrm{~cm}, B C=7 \mathrm{~cm}$ and $A D=15 \mathrm{~cm}$.

LONG ANSWER TYPE QUESTIONS

31. In the given fig. find the radius of the circle.
m
32. In the given fig. PQ is tangent and PB is diameter. Find the value of x and y.

ANSWERS AND HINTS

1. Since length of both the tangents from a point outside the circle is equal, So

$$
\begin{aligned}
\mathrm{BN} & =\mathrm{BL}, \mathrm{CM}=\mathrm{CL} \\
\mathrm{BL}+\mathrm{CL} & =\mathrm{BC}=10 \mathrm{~cm}
\end{aligned}
$$

2.

By Pythagorous Rule, $\mathrm{QR}=7 \mathrm{~cm}$.

Mathematics-X

3. Angle is the same segment are euqal.

- DC is the chord so $\left\lfloor\mathrm{DAC}=60^{\circ}\right.$.
- The sum of the opposite angles of a cyclic quadrilateral is 180°.

So $\angle \mathrm{BCD}=70^{\circ}$
4. The tangent at any point of a circle is perpendicular to the radius through the point of contact.

So,

$$
\begin{aligned}
& \mid \mathrm{RPO}=90^{\circ} \\
& \mid \mathrm{OPQ}=\angle \mathrm{OQP}=40^{\circ} \\
& \mid \mathrm{POQ}=100^{\circ}
\end{aligned}
$$

5.

$$
\begin{aligned}
& \Delta \mathrm{QPO} & \cong \Delta \mathrm{RPO} \\
\Rightarrow & \underline{\mathrm{QPO}} & =\underline{\mathrm{RPO}}=\frac{60^{\circ}}{2}=30^{\circ}
\end{aligned}
$$

In $\Delta \mathrm{QPO}, \quad \quad \mathrm{OQP}=90^{\circ}$ (Tangent is perpendicular at the point of contact).

$$
\tan 30^{\circ}=\frac{\mathrm{OQ}}{\mathrm{QP}} \Rightarrow \mathrm{QP}=3 \sqrt{3} \mathrm{~cm}
$$

6.

In $\triangle \mathrm{AOP}$, right angled at P .

$$
\begin{array}{ll}
& \mathrm{OA}^{2}=\mathrm{AP}^{2}+\mathrm{OP}^{2} \Rightarrow(5)^{2}=\mathrm{AP}^{2}+4^{2} \Rightarrow \mathrm{AP}^{2}=9 \\
\Rightarrow & \mathrm{AP}=3 \\
\text { In } \triangle \mathrm{PQO}, & \mathrm{AB}=6 \mathrm{~cm}
\end{array}
$$

7.

$$
(4)^{2}+(3)^{2}=(\mathrm{OP})^{2}
$$

$$
5=\mathrm{OP}
$$

In $\triangle \mathrm{PRO}$,

$$
(5)^{2}=(2)^{2}+(\mathrm{PR})^{2}
$$

$$
\mathrm{PR}=\sqrt{21} \mathrm{~cm}
$$

8.

In Quadrilateral PROQ

$$
\begin{aligned}
\lfloor 1+\lfloor 2+\lfloor 3+\lfloor 4 & =360^{\circ} \\
\lfloor 1+\lfloor\underline{3} & =180^{\circ} \\
\lfloor 3 & =140^{\circ}
\end{aligned}
$$

Now,

$$
\underline{3}=2 \underline{\underline{5}}
$$

$$
\underline{5}=70^{\circ} \text { or }\left\lfloor\mathrm{AQB}=70^{\circ}\right.
$$

$$
2(\underline{2}+\underline{3}+\underline{6}+\underline{7})=360^{\circ}
$$

9.

$$
\begin{aligned}
\text { or }\lfloor\mathrm{AOB}+\lfloor\mathrm{COD} & =186^{\circ} \\
\text { or }\lfloor\mathrm{COD} & =55^{\circ}
\end{aligned}
$$

10.

$$
\begin{aligned}
\mathrm{OQT} & =90^{\circ}(\text { Angle between tangent } \& \text { radius }) \\
\angle \mathrm{PQO} & =30^{\circ}\left(90^{\circ}-60^{\circ}\right) \\
\mathrm{PQO} & =\angle \mathrm{OPQ}=30^{\circ}
\end{aligned}
$$

11. Infinity many
12. One
13. 90° as $\triangle \mathrm{OQP}=90^{\circ}$ (Angle between tangent and radius of the circle)
14. $\mathrm{D}(\sqrt{119} \mathrm{~cm})$

Mathematics-X

15. Two
16. Point of Contact
17.

$$
\begin{aligned}
\left(\frac{d_{2}}{2}\right)^{2} & =\left(\frac{d_{1}}{2}\right)^{2}+A P^{2} \\
\left(\frac{d_{2}}{2}\right)^{2}-\left(\frac{d_{1}}{2}\right)^{2} & =A P^{2}
\end{aligned}
$$

$$
\sqrt{\frac{1}{4}\left[\left(d_{2}\right)^{2}-\left(d_{1}\right)^{2}\right]}=\mathrm{AP}
$$

$$
2 \sqrt{\frac{1}{4}\left[\left(d_{2}\right)^{2}-\left(d_{1}\right)^{2}\right]}=\mathrm{AB}
$$

$$
\sqrt{\left(d_{2}\right)^{2}-\left(d_{1}\right)^{2}}=\mathrm{C}
$$

$$
\left(d_{2}\right)^{2}-\left(d_{1}\right)^{2}=\mathrm{C}^{2}
$$

$$
d_{2}^{2}=\mathrm{C}^{2}-\mathrm{d}_{1}^{2}
$$

18.

$$
\begin{aligned}
(\mathrm{OP})^{2} & =(\mathrm{OT})^{2}+(\mathrm{PT})^{2} \\
(\mathrm{OP})^{2} & =(2.5)^{2}+(6)^{2} \\
& =42.25 \\
(\mathrm{OP})^{2} & =(6.5)^{2} \\
\mathrm{QP} & =4 \mathrm{~cm}
\end{aligned}
$$

19.

$$
\mathrm{OQP}=\mathrm{OPQ}=30^{\circ}
$$

OQT $=90^{\circ}$ (Angle between radius tangent)

$$
\begin{aligned}
\boxed{\mathrm{TQP}} & =\boxed{\mathrm{OQT}}-\boxed{\mathrm{OQP}} \\
& =90^{\circ}-30^{\circ}=60^{\circ}
\end{aligned}
$$

20.

$$
\begin{aligned}
\mathrm{AP} & =\mathrm{AR}=4 \mathrm{~cm} \\
\mathrm{CR} & =\mathrm{CQ}=(9-4) \mathrm{cm}=5 \mathrm{~cm} \\
& =\frac{1}{2}[\mathrm{AC}+\mathrm{AB}+\mathrm{BC}] \\
& =\frac{1}{2}[9+10+11]=15 \mathrm{~cm}
\end{aligned}
$$

21.

$$
\mathrm{b}-\mathrm{r}=\mathrm{AF}, \quad a-r=\mathrm{BF}
$$

or,

$$
\mathrm{AB}=\mathrm{C}=\mathrm{AF}+\mathrm{BF}=\mathrm{b}-\mathrm{r}+\mathrm{a}-\mathrm{r}
$$

This gives,

$$
\mathrm{r}=\frac{\mathrm{a}+\mathrm{b}-\mathrm{c}}{2}
$$

Mathematics-X

22.

23. Join OP
$A B$ is tangent to C_{1} at P and $O P$ is radius

$$
\mathrm{OP} \perp \mathrm{AB}
$$

AB is chord of circle C_{2} and $\mathrm{OP} \perp \mathrm{AB}$.
(Theorem 10.1, NCERT)

Therefore OP is the bisector of the chord AB as the perpendicular from the centre bisects the chord i.e,

$$
\mathrm{AP}=\mathrm{BP}
$$

24.

$$
\begin{aligned}
\angle \mathrm{OAB} & =50^{\circ} \\
\mathrm{x}+\underline{\mathrm{B}}+\underline{\mathrm{OAB}} & =180^{\circ} \\
\mathrm{x}+90^{\circ}+50^{\circ} & =180^{\circ} \\
\mathrm{x} & =40^{\circ}
\end{aligned}
$$

25.

$$
\begin{align*}
\mathrm{AK} & =\mathrm{KC} \tag{1}\\
\mathrm{BN} & =\mathrm{NC} \tag{2}
\end{align*}
$$

$$
\mathrm{KN}=\mathrm{KC}+\mathrm{NC}=\mathrm{AK}+\mathrm{BN}
$$

26.

$$
\begin{aligned}
\mathrm{POQ}+\triangle \mathrm{PTQ} & =180^{\circ} \\
60^{\circ}+\triangle \mathrm{PTQ} & =180^{\circ} \\
\mathrm{PTQ} & =120^{\circ}
\end{aligned}
$$

27.

$$
\begin{align*}
& \mathrm{AC}=\mathrm{AF}+\mathrm{FC}=10 \mathrm{~cm} \\
& \mathrm{AB}=\mathrm{AD}+\mathrm{DB}=12 \mathrm{~cm} \\
& \mathrm{BC}=\mathrm{BE}+\mathrm{CE}=8 \mathrm{~cm} \tag{3}\\
& {\left[\begin{array}{lll}
\mathrm{BD} & =\mathrm{BE} \\
\mathrm{AD} & = & \mathrm{AF} \\
\mathrm{CF} & =\mathrm{CE}
\end{array}\right]} \tag{4}
\end{align*}
$$

$2 \mathrm{AD}, 2 \mathrm{FC}, 2 \mathrm{BD}$ are obtained
Replace from (4) in (1), (2), (3) (So that in (5) + (6) + (7)). 2AD, 2FC, 2BD are obtained.

Add (5, 6, 7)

$$
2(\mathrm{AD}+\mathrm{FC}+\mathrm{DB})=30
$$

$$
\mathrm{AD}+\mathrm{FC}+\mathrm{DB}=15
$$

Substitute values from (1), (2) \& (3)
and find. $\mathrm{AD}=7 \mathrm{~cm}, \mathrm{BE}=5 \mathrm{~cm}, \mathrm{CF}=3 \mathrm{~cm}$.
28.

So,

$$
\mathrm{PA}=\mathrm{PB}
$$

So,

$$
\angle 2=\angle 3=\frac{1}{2}\left(180^{\circ}-\angle 1\right)
$$

$$
\angle 4=90^{\circ} \quad \text { (Angle between tangent \& Radius) }
$$

$$
=90^{\circ}-\left(90^{\circ}-\frac{1}{2} \angle 1\right)=90^{\circ}-90^{\circ}+\frac{1}{2} \angle 1
$$

29.

$$
\angle 2=\angle 3=90^{\circ}-\frac{1}{2} \angle 1
$$

$$
\angle \mathrm{OAB}=\angle 4-\angle 2
$$

29.

$$
\begin{aligned}
\angle \mathrm{OAB} & =\frac{1}{2} \angle \mathrm{APB} \\
2 \angle \mathrm{OAB} & =\angle \mathrm{APB} \\
\mathrm{OP} & =2 \mathrm{r} \\
\Rightarrow \quad \mathrm{QP}=\mathrm{QP} & =\mathrm{r}
\end{aligned}
$$

Consider $\triangle \mathrm{AOP}$ is which $\mathrm{OA} \perp \mathrm{AP}$ and OP is the hypotenuse.

$$
\mathrm{OQ}=\mathrm{AQ}=\mathrm{OA}
$$

(Mid point of hy potenuse is equidistance from the vertices).
$\Rightarrow \mathrm{OAQ}$ is an equilitateral triangle.
$\Rightarrow \quad\left\lfloor\mathrm{AOQ}=60^{\circ}\right.$
Consider right angled triangle OAP

$$
\triangle \mathrm{AOQ}=60^{\circ}
$$

Mathematics-X

$$
\begin{align*}
& \mathrm{AC}=\mathrm{AD}+\mathrm{FC}=10 \mathrm{~cm} \tag{1}\\
& \mathrm{AB}=\mathrm{AD}+\mathrm{DB}=12 \mathrm{~cm} \tag{2}\\
& \mathrm{BC}=\mathrm{BD}+\mathrm{CE}=8 \mathrm{~cm} \tag{3}
\end{align*}
$$

$$
\begin{aligned}
\triangle \mathrm{OAP} & =90^{\circ} \Rightarrow \angle \mathrm{APO}=30^{\circ} \\
\angle \mathrm{APB} & =2 \angle \mathrm{APO}=2 \times 30^{\circ}=60^{\circ} \\
\mathrm{PA} & =\mathrm{PB} \text { (tangents) } \\
\angle \mathrm{PAB} & =\angle \mathrm{PBA} \\
\mathrm{In} \triangle \mathrm{APB} & =60^{\circ} \\
\angle \mathrm{PAB}=\angle \mathrm{PBA} & =\frac{180^{\circ}-60^{\circ}}{2}=60^{\circ}
\end{aligned}
$$

$$
\Rightarrow \text { each angle of DPAB }=60^{\circ} . \quad \text { Hence Proved. }
$$

30.

PC or $\mathrm{CP}=5 \mathrm{~cm}$

$$
\begin{array}{rlr}
\text { In } \triangle \mathrm{ABC}, \quad \angle 1 & =90^{\circ} & \text { (Angle in semi-circles) } \\
\angle 1+35^{\circ}+y & =180^{\circ} & \\
90^{\circ}+35^{\circ}+y & =180^{\circ} & \\
y & =55^{\circ} & \\
\triangle \mathrm{OBQ}, \quad \angle 2 & =90^{\circ} & \text { (Angle between tangen }
\end{array}
$$

$$
\angle 2+\angle x+\angle y=180^{\circ}
$$

$$
90^{\circ}+\angle x+55^{\circ}=180^{\circ}
$$

$$
x=35^{\circ}
$$

PRACTICE-TEST
 CIRCLES

SECTION-A

1. In the given figure find x, where ST is the tangent.

1

2. In the given figure if $\mathrm{AC}=9$, find BD .

1

3. In the given figure, $\triangle \mathrm{ABC}$ is circumscribing a circle, then find the length of BC .1

4. From the external point P tangents PA and PB are drawn to a circle with centre O . If $\angle \mathrm{PAB}=50^{\circ}$, then find $\angle \mathrm{AOB}$.
(Delhi-2016, CBSE) 1

SECTION-B

5. If the angle between two tangents drawn from an external point P to a circle of radius a and centre O is 60° then find the length of OP . (All India 2017) 2

Mathematics-X

6. In the following figure find x.

7. Two concentric circle with centre O are of radii 6 cm and 3 cm . From an external point P , tangents PA and PB are drawn to these circle as shown in the figure. If $A P=10 \mathrm{~cm}$. Find BP

SECTION-C

8. In the given figure, AB is a tangent to a circle with centre O . Prove $\angle \mathrm{BPQ}=$ $\angle \mathrm{PRQ}$.

9. In the given figure $\triangle \mathrm{ABC}$ is drawn to circumscribe a circle of radius 3 cm , such that the segment BD and DC into which BC is divided by the point of
contact D are of length 6 cm and 8 cm respectively, find side $A B$ if the $\operatorname{ar}(\triangle A B C)$ $=63 \mathrm{~cm}^{2}$

SECTION-D

10. AB is a diameter of a circle with centre O and AT is a tangent. If $\angle \mathrm{AOQ}=58^{\circ}$ find $\angle \mathrm{ATQ}$.

בan

Mathematics-X

