CHAPTER 10 # **Circles** #### **KEY POINTS** - A circle is a collection of all those points in a plane which are at a constant distance from a fixed point. The fixed point is called the centre and fixed distance is called the radius. - 2. **Secant:** A line which intesects a circle in two distinct points is called a secant of the circle. 3. **Tangent**: It is a line that intersects the circle at only one point. The point where tangent touches the circle is called the point of contact. Here A is the poin of contact. 122 - 4. **Number of Tangent**: Infinitely many tangents can be drawn on a circle. - **5. Number of Secant**: There are infinitely many secants which can be drawn on a circle. - **6.** The proofs of the following theorems can be asked in the examination:– - (i) The tangent at any point of a circle is perpendicular to the radius through the point of contact. - (ii) The lengths of tangents drawn from an external point to a circle are equal. - 7. There is only one tangent at a point of the circle. - **8.** The tangent to a circle is a special case of the secant. - **9.** There is no tangent to a circle passing through a point lying inside the circle. - **10.** There is one and only one tangent to a circle passing through a point lying on the circle. - 11. There are exactly two tangents to a circle through a point lying outside the circles #### **VERY SHORT ANSWER TYPE QUESTIONS** 1. In fig., \triangle ABC is circumscribing a circle. Find the length of BC. - 2. The length of the tangent to a circle from a point P, which is 25 cm away from the centre, is 24 cm. What is the radius of the circle. - 3. In fig., ABCD is a cyclic quadrilatreral. If $\angle BAC = 50^{\circ}$ and $\angle DBC = 60^{\circ}$, then find $\angle BCD$. **4.** In figure, O is the centre of a circle, PQ is a chord and the tangent PR at P makes an angles of 50° with PQ. Find ∠POQ. - 5. If two tangents inclined at an angle 60° are drawn to a circle of radius 3 cm, then find the length of each tangent. - **6.** If radii of two concentric circles are 4 cm and 5 cm, then find the length of the chord of one circle which is tangent to the other circle. - 7. In the given figure, PQ is tangent to outer circle and PR is tangent to inner circle. If PQ = 4cm, OQ = 3 cm and QR = 2 cm then find the length of PR. (124) Mathematics-X 8. In the given figure, O is the centre of the circle, PA and PB are tangents to the circle then find ∠AQB. (CBSE 2016) **9.** In the given figure, If $\angle AOB = 125^{\circ}$ then find $\angle COD$. 10. If two tangent TP and TQ are drawn from an external point T such that $\angle TQP = 60^{\circ}$ then find $\angle OPQ$. 11. How many tangents can a circle have? (NCERT) **12.** A tangent to a circle intersects it in _____ points. (NCERT) If PQ is a tangent then find the value of |PQ| + |QPO|. **Mathematics-X** 125) **14.** Choose the correct Answer. A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that OQ = 12 cm. Length PQ is: - (a) 12 cm - (b) 13 cm - (c) 8.5 cm - (d) $\sqrt{119}$ cm (NCERT) - **15.** A circle can have _____ parallel tangents at the most. (NCERT) **16.** The common point of a tangent to a circle and the circle is called ______. (NCERT) #### **SHORT ANSWER TYPE-I QUESTIONS** - 17. If diameters of two concentric circle are d_1 and d_2 ($d_2 > d_1$) and c is the length of chord of bigger circle which is tangent to the smaller circle. Show that $d_2^2 = c^2 + d_1^2$. - **18.** The length of tangent to a circle of radius 2.5 cm from an external point P is 6 cm. Find the distance of P from the nearest point of the circle. - 19. TP and TQ are the tangents from the external point T of a circle with centre O. If $\angle OPQ = 30^{\circ}$ then find the measure of $\angle TQP$. - **20.** In the given fig. AP = 4 cm, BQ = 6 cm and AC = 9 cm. Find the semi perimeter of $\triangle ABC$. - 21. A circle is drawn inside a right angle triangle whose sides are a, b, c where c is the hypotenuse, which touches all the sides of the triangle. Prove $r = \frac{a+b-c}{2}$ where r is the radius of the circle. (NCERT Exampler, 2012) - **126** - **22.** Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact. - **23.** Prove that in two concentric circles the chord of the larger circle which is tangent to the smaller circle is bisected at the point of contact. - **24.** In the given Fig., AC is diameter of the circle with centre O and A is point of contact, then find *x*. **25.** In the given fig. KN, PA and PB are tangents to the circle. Prove that: KN = AK + BN. **26.** In the given fig. PQ is a chord of length 6 cm and the radius of the circle is 6 cm. TP and TQ are two tangents drawn from an external point T. Find ∠PTQ. # **SHORT ANSWER TYPE-II QUESTIONS** **27.** In the given figure find AD, BE, CF where AB = 12 cm, BC = 8 cm and AC = 10 cm. **28.** Two tangents PA and PB are drawn to a circle with centre O from an external point P. Prove that $\angle APB = 2 \angle OAB$ (NCERT, Exemplar-2) **29.** In the given fig. OP is equal to the diameter of the circle with centre O. Prove that \triangle ABP is an equilateral triangle. (128) 30. In the given fig., find PC. If AB = 13 cm, BC = 7 cm and AD = 15 cm. # LONG ANSWER TYPE QUESTIONS **31.** In the given fig. find the radius of the circle. m **32.** In the given fig. PQ is tangent and PB is diameter. Find the value of x and y. # **ANSWERS AND HINTS** 1. Since length of both the tangents from a point outside the circle is equal, So $$BN = BL, CM = CL$$ $$BL + CL = BC = 10 \text{ cm}$$ By Pythagorous Rule, QR = 7 cm. - **3.** Angle is the same segment are equal. - DC is the chord so $|DAC| = 60^{\circ}$. - The sum of the opposite angles of a cyclic quadrilateral is 180°. So $$|BCD| = 70^{\circ}$$ **4.** The tangent at any point of a circle is perpendicular to the radius through the point of contact. So, $\frac{|\text{RPO}| = 90^{\circ}}{|\text{OPQ}| = |\text{OQP}| = 40^{\circ}}$ $|\text{POQ}| = 100^{\circ}$ $$\Delta QPO \cong \Delta RPO$$ $$\Rightarrow \qquad |\underline{QPO}| = |\underline{RPO}| = \frac{60^{\circ}}{2} = 30^{\circ}$$ In $\triangle QPO$, $\boxed{QQP} = 90^{\circ}$ (Tangent is perpendicular at the point of contact). $$\tan 30^{\circ} = \frac{OQ}{OP} \implies QP = 3\sqrt{3} \text{ cm}$$ In \triangle AOP, right angled at P. $$OA^2 = AP^2 + OP^2 \implies (5)^2 = AP^2 + 4^2 \implies AP^2 = 9$$ $$\Rightarrow$$ AP = 3 In $$\triangle PQO$$, AB = 6 cm $$(4)^2 + (3)^2 = (OP)^2$$ $$5 = OP$$ In ΔPRO, $$(5)^2 = (2)^2 + (PR)^2$$ $$PR = \sqrt{21} \text{ cm}$$ In Quadrilateral PROQ $$1 + 2 + 3 + 4 = 360^{\circ}$$ $$1 + 3 = 180^{\circ}$$ $$|3| = 140^{\circ}$$ Now, $$|3| = 2|5|$$ $$\underline{5} = 70^{\circ} \text{ or } \underline{AQB} = 70^{\circ}$$ 9. $$\frac{\frac{1}{3} = \frac{2}{4}}{\frac{5}{3} = \frac{6}{4}}$$ (CPCT) of their corresponding triangles. $$2(2 + 3 + 6 + 7) = 360^{\circ}$$ or $$\triangle AOB + \triangle COD = 186^{\circ}$$ or $$COD = 55^{\circ}$$ 10. $OQT = 90^{\circ}$ (Angle between tangent & radius) $$|PQO = 30^{\circ} (90^{\circ} - 60^{\circ})|$$ $$|PQO| = |OPQ| = 30^{\circ}$$ - 11. Infinity many - **12.** One - 13. 90° as $|OQP| = 90^{\circ}$ (Angle between tangent and radius of the circle) - **14.** $D(\sqrt{119} \text{ cm})$ #### **15.** Two # 16. Point of Contact **17.** $$AO^{2} = OP^{2} + AP^{2}$$ $$\left(\frac{d_{2}}{2}\right)^{2} = \left(\frac{d_{1}}{2}\right)^{2} + AP^{2}$$ $$\left(\frac{d_{2}}{2}\right)^{2} - \left(\frac{d_{1}}{2}\right)^{2} = AP^{2}$$ $$\sqrt{\frac{1}{4}\left[(d_{2})^{2} - (d_{1})^{2}\right]} = AP$$ $$2\sqrt{\frac{1}{4}\left[(d_{2})^{2} - (d_{1})^{2}\right]} = AB$$ $$\sqrt{(d_{2})^{2} - (d_{1})^{2}} = C$$ $$(d_{2})^{2} - (d_{1})^{2} = C^{2}$$ $$d_{2}^{2} = C^{2} - d_{1}^{2}$$ 18. $\boxed{132}$ $$= 90^{\circ} - 30^{\circ} = 60^{\circ}$$ $$AP = AR = 4 \text{ cm}$$ $$CR = CQ = (9 - 4) \text{ cm} = 5 \text{ cm}$$ $$= \frac{1}{2}[AC + AB + BC]$$ $$= \frac{1}{2}[9 + 10 + 11] = 15 \text{ cm}$$ 21. or, $$b-r = AF, \quad a-r = BF$$ $$AB = C = AF + BF = b-r + a-r$$ This gives, $$r=\ \frac{a+b-c}{2}$$ (Theorem 10.1, NCERT) # 23. Join OP AB is tangent to C_1 at P and OP is radius $$OP \perp AB$$ AB is chord of circle C_2 and $OP \perp AB$. Therefore OP is the bisector of the chord AB as the perpendicular from the centre bisects the chord i.e, 24. $$\angle OAB = 50^{\circ}$$ $x + |\underline{B}| + |\underline{OAB}| = 180^{\circ}$ $x + 90^{\circ} + 50^{\circ} = 180^{\circ}$ $x = 40^{\circ}$ 25. $AK = KC$...(1) $BN = NC$...(2) $KN = KC + NC = AK + BN$ [from (1) & (2)] 26. $|\underline{POQ}| + |\underline{PTQ}| = 180^{\circ}$ $60^{\circ} + |\underline{PTQ}| = 180^{\circ}$ $|\underline{PTQ}| = 120^{\circ}$ 27. $AC = AF + FC = 10 \text{ cm}$...(1) $AB = AD + DB = 12 \text{ cm}$...(2) $BC = BE + CE = 8 \text{ cm}$...(3) $|\underline{BD}| = BE$ $AD = AF$ $CF = CE$...(4) 2AD, 2FC, 2BD are obtained Replace from (4) in (1), (2), (3) (So that in (5) + (6) + (7)). 2AD, 2FC, 2BD are obtained. $$AC = AD + FC = 10 \text{ cm} \dots (1)$$ $$AB = AD + DB = 12 \text{ cm}$$...(2) $$BC = BD + CE = 8 \text{ cm}$$...(3) Add(5, 6, 7) $$2(AD + FC + DB) = 30$$ $$AD + FC + DB = 15$$ Substitute values from (1), (2) & (3) and find. AD = 7 cm, BE = 5 cm, CF = 3 cm. 28. 29. $$PA = PB$$ So, $$\angle 2 = \angle 3 = \frac{1}{2} (180^{\circ} - \angle 1)$$ $\angle 4 = 90^{\circ}$ (Angle between tangent & Radius) $\angle OAB = \angle 4 - \angle 2$ $$\angle OAB = \angle 4 - \angle 2$$ $$= 90^{\circ} - \left(90^{\circ} - \frac{1}{2} \angle 1\right) = 90^{\circ} - 90^{\circ} + \frac{1}{2} \angle 1$$ $$\angle OAB = \frac{1}{2} \angle APB$$ $$2\angle OAB = \angle APB$$ $$OP = 2r$$ QP = QP = r Consider \triangle AOP is which OA \perp AP and OP is the hypotenuse. $$OQ = AQ = OA$$ (Mid point of hy potenuse is equidistance from the vertices). OAQ is an equilitateral triangle. $$\Rightarrow$$ |AOQ = 60° Consider right angled triangle OAP $$AOQ = 60^{\circ}$$ $$|\underline{OAP} = 90^{\circ} \implies \angle APO = 30^{\circ}$$ $$\angle APB = 2\angle APO = 2 \times 30^{\circ} = 60^{\circ}$$ $$PA = PB \text{ (tangents)}$$ $$\Rightarrow \angle PAB = \angle PBA$$ $$In \triangle APB = 60^{\circ}$$ $$|\underline{PAB} = |\underline{PBA}| = \frac{180^{\circ} - 60^{\circ}}{2} = 60^{\circ}$$ \Rightarrow each angle of DPAB = 60° . **Hence Proved.** PC or CP = 5 cm r = 11 cm In $$\triangle ABC$$, $\angle 1 = 90^{\circ}$ $\angle 1 + 35^{\circ} + y = 180^{\circ}$ $90^{\circ} + 35^{\circ} + y = 180^{\circ}$ $y = 55^{\circ}$ $\triangle OBQ$, $\angle 2 = 90^{\circ}$ $\angle 2 + \angle x + \angle y = 180^{\circ}$ $90^{\circ} + \angle x + 55^{\circ} = 180^{\circ}$ $x = 35^{\circ}$ (Angle in semi-circles) (Angle between tangent and radius) 136 # PRACTICE-TEST # **CIRCLES** Time: 1 Hr. M.M.: 20 #### **SECTION-A** 1. In the given figure find *x*, where ST is the tangent. 1 2. In the given figure if AC = 9, find BD. 1 3. In the given figure, \triangle ABC is circumscribing a circle, then find the length of BC. 1 4. From the external point P tangents PA and PB are drawn to a circle with centre O. If $\angle PAB = 50^{\circ}$, then find $\angle AOB$. (Delhi-2016, CBSE) 1 #### **SECTION-B** 5. If the angle between two tangents drawn from an external point P to a circle of radius a and centre O is 60° then find the length of OP. (All India 2017) 2 6. In the following figure find x. 7. Two concentric circle with centre O are of radii 6 cm and 3 cm. From an external point P, tangents PA and PB are drawn to these circle as shown in the figure. If AP = 10 cm. Find BP # **SECTION-C** 8. In the given figure, AB is a tangent to a circle with centre O. Prove ∠BPQ = ∠PRQ. 9. In the given figure $\triangle ABC$ is drawn to circumscribe a circle of radius 3 cm, such that the segment BD and DC into which BC is divided by the point of # **Mathematics-X** 2 contact D are of length 6 cm and 8 cm respectively, find side AB if the $ar(\Delta ABC)$ = 63 cm² **SECTION-D** 10. AB is a diameter of a circle with centre O and AT is a tangent. If $\angle AOQ = 58^{\circ}$ find $\angle ATQ$.