CHAPTER

2

Polynomials

KEY POINTS

1. Polynomial : If x is a variable, n is a natural number and $a_{0}, a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots$. a_{n} are real numbers, then $p(x)=a_{\mathrm{n}} x^{\mathrm{n}}+a_{\mathrm{n}-1} x^{\mathrm{n}-1}+\ldots \ldots \ldots .+a_{1} x+a_{0},\left(a_{\mathrm{n}} \neq 0\right)$ is called a polynomial in x.
2. Polynomials of degree 1,2 and 3 are called linear, quadratic and cubic polynomials respectively.
3. A quadratic polynomial is an algebraic expression of the form $a x^{2}+b x+c$, where a, b, c are real numbers with $a \neq 0$.
4. Zeros of a polynomial $p(x)$ are precisely the x-coordinates of the points where the graph of $y=p(x)$ intersects the x-axis, i.e., $x=a$ is a zero of polynomial $p(x)$ if $p(a)=0$
5. A polynomial can have at most the same number of zeros as the degree of the polynomial.
6. (i) If one zero of a quadratic polynomial $p(x)$ is negative of the other, then coefficient of x is 0 .
(ii) If zeroes of a quadratic polynomial $p(x)$ are reciprocal of each other, then coefficient of $x^{2}=$ constant term.
7. Relationship between zeros and coefficients of a polynomial

If α and β are zeros of $p(x)=a x^{2}+b x+c(a \neq 0)$, then
Sum of zeros $=\alpha+\beta=-\frac{b}{a}$
Product of zeros $=\alpha \beta=\frac{c}{a}$
8. If α, β are zeros of a quadratic polynomial $p(x)$, then $p(x)=k\left[x^{2}-(\right.$ sum of zeros $) x+$ product of zeros $]$
$\Rightarrow p(x)=k\left[x^{2}-(\alpha+\beta) x+\alpha \beta\right]$; where k is any non-zero real number.
9. Graph of linear polynomial $p(x)=a x+b$ is a straight line.
10. Division Algorithm states that given any polynomials $p(x)$ and $g(x)$, there exist polynomial $q(x)$ and $r(x)$ such that:

$$
p(x)=g(x) \cdot q(x)+r(x) ; g(x) \neq 0,
$$

[where either $r(x)=0$ or degree $r(x)<$ degree $g(x)$]
Graph of different types of polynomials:

- Linear Polynomial : The graph of a linear polynomial $a x+b$ is a straight line, intersecting x-axis at one point.
- Quadratic Polynomial:
(i) Graph of a quadratic polynomial $p(x)=a x^{2}+b x+c$ is a parabola open upwards like U , if a >0 and intersect x-axis at maximum two distinct points.

(ii) Graph of a quodratic polynomial $p(x)=a x^{2}+b x+c$ is a parabola open downwards like \cap, if a <0 and intersect x-axis at maximum two distinct points.

(iii) Polynomial and its graph : In general a polynomial $p(x)$ of degree n crosses the x-axis at most n points.

Mathematics-X

VERY SHORT ANSWER TYPE QUESTIONS

1. If one root of the polynomial $P(x)=5 x^{2}+13 x+K$ is reciprocal of the other, then value of k is
(a) 0
(b) 5
(c) $\frac{1}{6}$
(d) 6
2. If α and β are the zeroes of the polynomial $p(x)=x^{2}-p(\mathrm{x}+1)-\mathrm{c}$ such that $(\alpha+1)(\beta+1)=0$, the $\mathrm{c}=$ \qquad .
3. If one zero of the quadratic polynomial $x^{2}+3 x+k$ is 2 , then the value of k is
(a) 10
(b) -10
(c) 5
(d) -5
4. If the zeroes of the quadratic polynomial $x^{2}+(a+1) x+b$ are 2 and -3 , then
(a) $a=-7, b=-1$
(b) $a=5, b=-1$
(c) $\mathrm{a}=2, b=-6$
(d) $a=0, b=-6$
5. What should be added to the polynomial $x^{2}-5 x+4$, so that 3 is the zero of the resulting polynomial:
(a) 1
(b) 2
(c) 4
(d) 5
6. If α and β are the roots of the polynomial

$$
f(x)=\mathrm{x}^{2}+\mathrm{x}+1, \text { then } \frac{1}{\alpha}+\frac{1}{\beta}=
$$

7. If a quadratic polynomial $f(x)$ is not factorizable into linear factors, then it has no real zero. (True/False)
8. If a quadratic polynomial $f(x)$ is a square of a linear polynomial, then its two zeros are coincident. (True/False).
9. The product of the zeros of $x^{3}+4 x^{2}+x-6$ is
(a) -4
(b) 4
(c) 6
(d) 6
10. Given that two of the zeros of the cubic polynomial $a x^{3}+b x^{2}+c x+d$ are 0 , the third zero is
(a) $-\frac{b}{a}$
(b) $\frac{b}{a}$
(c) $\frac{c}{a}$
(d) $-\frac{d}{a}$
11. What will be the number of zeros of a linear polynomial $p(x)$ if its graph (i) passes through the origin. (ii) doesn't intersect or touch x-axis at any point?
12. Find the quadratic polynomial whose zeros are
$(5+2 \sqrt{3})$ and $(5-2 \sqrt{3})$
13. If one zero of $p(x)=4 x^{2}-\left(8 k^{2}-40 k\right) x-9$ is negative of the other, find values of k.
14. What number should be added to the polynomial $x^{2}-5 x+4$, so that 3 is a zero of polynomial so obtained.
15. How many (i) maximum (ii) minimum number of zeroes can a quadratic polynomial have?
16. What will be the number of real zeros of the polynomial $x^{2}+1$?
17. If α and β are zeros of polynomial $6 x^{2}-7 x-3$, then form a quadratic polynomial where zeros are 2α and 2β
(CBSE)
18. If α and $\frac{1}{\alpha}$ are zeros of $4 x^{2}-17 x+k-4$, find the value of k.
19. What will be the number of zeros of the polynomials whose graphs are parallel to (i) y-axis (ii) x-axis?
20. What will be number of zeros of the polynomials whose graphs are either touching or intersecting the axis only at the points:
(i) $(-3,0),(0,2) \&(3,0)(i i)(0,4),(0,0)$ and $(0,-4)$

SHORT ANSWER TYPE (I) QUESTIONS

21. If -3 is one of the zeros of the polynomial $(k-1) x^{2}+k x+1$, find the value of k.
22. If the product of zeros of $a x^{2}-6 x-6$ is 4 , find the value of a. Hence find the sum of its zeros.
23. If zeros of $x^{2}-k x+6$ are in the ratio $3: 2$, find k.
24. If one zero of the quadratic polynomial $\left(k^{2}+k\right) x^{2}+68 x+6 k$ is reciprocal of the other, find k.
25. If α and β are the zeros of the polynomial $x^{2}-5 x+m$ such that $\alpha-\beta=1$, find m.
(CBSE)
26. If the sum of squares of zeros of the polynomial $x^{2}-8 x+k$ is 40 , find the value of k.
27. If α and β are zeros of the polynomial $t^{2}-t-4$, form a quadratic polynomial whose zeros are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.
28. What should be added to the polynomial $x^{3}-3 x^{2}+6 x-15$, so that it is completely divisible by $x-3$?
(CBSE 2016)

Mathematics-X

29. If m and n are the zeros of the polynomial $3 x^{2}+11 x-4$, find the value of $\frac{m}{n}+\frac{n}{m}$.
(CBSE, 2012)
30. Find a quadratic polynomial whose zeros are $\frac{3+\sqrt{5}}{5}$ and $\frac{3-\sqrt{5}}{5}$.
(CBSE, 2013)

SHORT ANSWER TYPE (II) QUESTIONS

31. If $(k+y)$ is a factor of each of the polynomials $y^{2}+2 y-15$ and $y^{3}+a$, find the values of k and a.
32. Obtain zeros of $4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}$ and verify relation between its zeroes and coefficients.
33. If $x^{4}+2 x^{3}+8 x^{2}+12 x+18$ is divided by $\left(x^{2}+5\right)$, remainder comes out to be ($p x$ $+q$), find values of p and q.
34. -5 is one of the zeros of $2 x^{2}+p x-15$, zeroes of $p\left(x^{2}+x\right)+k$ are equal to each other. Find the value of k.
35. Find the value of k such that $3 x^{2}+2 k x+x-k-5$ has the sum of zeros as half of their product.
36. If α and β are zeros of $y^{2}+5 y+m$, find the value of m such that $(\alpha+\beta)^{2}-\alpha \beta=$ 24
37. If α and β are zeros of $x^{2}-x-2$, find a polynomial whose zeros are $(2 \alpha+1)$ and $(2 \beta+1)$
38. Find values of a and b so that $x^{4}+x^{3}+8 x^{2}+a x+b$ is divisible by $x^{2}+1$.
39. What must be subtracted from $8 x^{4}+14 x^{3}-2 x^{2}+7 x-8$ so that the resulting polynomial is exactly divisible by $4 x^{2}+3 x-2$?
40. What must be added to $4 x^{4}+2 x^{3}-2 x^{2}+x-1$ so that the resulting polynomial is divisible by $x^{2}-2 x-3$?

LONG ANSWER TYPE QUESTIONS

41. Find all zeros of the polynomial $2 x^{3}+x^{2}-6 x-3$ if two of its zeroes are $\sqrt{3}$ and $-\sqrt{3}$.
42. If $\sqrt{2}$ is a zero of $\left(6 x^{3}+\sqrt{2} x^{2}-10 x-4 \sqrt{2}\right)$, find its other zeroes.
43. If two zeros of $x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $(2 \pm \sqrt{3})$, find other zeroes.
44. On dividing the polynomial $x^{3}-5 x^{2}+6 x-4$ by a polynomial $g(x)$, quotient and remainder are $(x-3)$ and $(-3 x+5)$ respectively. Find $g(x)$
45. Obtain all zeros of the polynomial $2 x^{4}-2 x^{3}-7 x^{2}+3 x+6$ if two factors of this polynomial are $\left(x \pm \sqrt{\frac{3}{2}}\right)$.
46. If the polynomial $x^{4}-3 x^{3}-6 x^{2}+k x-16$ is exactly divisible by $x^{2}-3 x+2$, then find the value of k.
(CBSE, 2014)
47. If the polynomial $x^{4}-6 x^{3}+16 x^{2}-25 x+10$ is divided by $x^{2}-2 x+k$, then find the vlaue of k and a.
(CBSE)
48. If α and β are zeros of the polynomial $x^{2}+4 x+3$, find the polynomial whose zeros are $1+\frac{\beta}{\alpha}$ and $1+\frac{\alpha}{\beta}$.
49. Find K , so that $x^{2}+2 x+\mathrm{K}$ is a factor of $2 x^{4}+x^{3}-14 x^{2}+5 x+6$. Also find all the zeros of the two polynomials:
(Exempler, HOTS)
50. If $x-\sqrt{5}$ is a factor of the cubic polynomial $x^{3}-3 \sqrt{5} x^{2}+13 x-3 \sqrt{5}$, then find all the zeros of the polynomial.

ANSWERS AND HINTS

1. (b) 5
2. -1
3. (b) -10
4. (d) $a=0, b=-6$
5. (b) 2
6. -1
7. True
8. True
9. (c) 6
10. (a) $-\frac{b}{a}$

Mathematics-X
11. (i) 1 (ii) 0
12. $x^{2}-10 x+13$
13. $k=0,5$
14. 2
15. (i) 2 (ii) 0
16. 0
17. $3 x^{2}-7 x-6$
18. $k=8$
19. (i) 1 (ii) 0
20. (i) 2 (ii) 1
21. $4 / 3$
22. $a=-\frac{3}{2}$, sum of zeroes $=-4$
23. $-5,5$
24. 5
25. 6
26. 12
27. $4 t^{2}+t-1$
28. On dividing $x^{3}-3 x^{2}+6 x-15$ by $x-3$, remainder is +3 , hence -3 must be added to $x^{3}-3 x^{2}+6 x-15$.
29. $\frac{m}{n}+\frac{n}{m}=\frac{m^{2}+n^{2}}{m n}=\frac{(m+n)^{2}-2 m n}{m n}=\frac{\left(-\frac{11}{3}\right)^{2}-2\left(-\frac{4}{3}\right)}{-\frac{4}{3}}=-\frac{145}{12}$
30. $\alpha+\beta=\frac{6}{5}, \quad \alpha \beta=\frac{4}{25}$,
31. $k=3,-5$ and $a=27,-125$ $25 x^{2}-30 x+4$
32. $-\frac{2}{\sqrt{3}}, \frac{\sqrt{3}}{4}$
33. $p=2, q=3$
34. $\frac{7}{4}$
35. 1
36. 1
37. $x^{2}-4 x-5$
38. $a=1, b=7$
39. $14 x-10$
40. $61 x-65$
41. $\sqrt{3},-\sqrt{3},-\frac{1}{2}$
42. $-\frac{\sqrt{2}}{2}, \frac{-2 \sqrt{2}}{3}$
43. $-5,7$
44. $x^{2}-2 x+3$
45. $2,-1, \mp \sqrt{\frac{3}{2}}$
46. $x^{2}-3 x+2=(x-2)(x-1)$
$P(1)=0, K=24$.
47. On dividing $x^{4}-6 x^{3}+16 x^{2}-25 x+10$ by $x^{2}-2 x+k$ we get remainder $(2 k-9) x+\left(10-8 k+k^{2}\right)$
Given remainder $=x+9$

$$
\begin{aligned}
& 2 k-9=1 \quad \Rightarrow \quad k=5 \\
& 10-8 k+k^{2}=a \Rightarrow a=10-40+25=-5 \\
& a=-5, \quad k=5
\end{aligned}
$$

48. $x^{2}-\frac{16}{3} x+\frac{16}{3}$ or $\frac{1}{3}\left(3 x^{2}-16 x+16\right)$
49. On dividing $2 x^{4}+x^{3}-14 x^{2}+5 x+6$ by $x^{2}+2 \mathrm{x}+k$

We get $(7 k+21) x+2 k^{2}+8 k+6$ as remainder is zero.

$$
\begin{aligned}
\Rightarrow & 7 \mathrm{k}+21 & =0 \text { and } 2 k^{2}+8 k+6=0 \\
\Rightarrow & k & =-3 \text { and } k=-1 \text { or }-3 \\
\Rightarrow & k & =-3
\end{aligned}
$$

Zeros of $x^{2}+2 x-3$ are $1,-3$ and $2 x^{4}+x^{3}-14 x^{2}+5 x+6$ are $1,-3,2,-\frac{1}{2}$
50. $\sqrt{5}, \sqrt{5}+\sqrt{2}, \sqrt{5}-\sqrt{2}$

Mathematics-X

PRACTICE-TEST

Polynomials

Time : 1 Hr.

SECTION-A

1. If α and β are zeros of a quadratic polynomial $p(x)$, then factorize $p(x)$.

1
2. If α and β are zeros of $x^{2}-x-1$, find the value of $\frac{1}{\alpha}+\frac{1}{\beta}$.
3. If one of the zeros of quadratic polynomial $(K-1) x^{2}+k x+1$ is -3 then the value of K is,

1
(a) $\frac{4}{3}$
(b) $-\frac{4}{3}$
(c) $\frac{2}{3}$
(d) $-\frac{2}{3}$
4. A quadratic polynomial, whose zeros are -3 and 4 , is
(a) $x^{2}-x+12$
(b) $x^{2}+x+12$
(c) $\frac{x^{2}}{2}-\frac{x}{2}-6$
(d) $2 x^{2}+2 x-24$

SECTION-B

5. If α and β are zeros of $x^{2}-(k+6) x+2(2 k-1)$. find the value of k if $\alpha+\beta=\frac{1}{2} \alpha \beta$.
6. Find a quadratic polynomial one of whose zeros is $(3+\sqrt{2})$ and the sum of its zeroes is 6 .
7. If zeros of the polynomial $x^{2}+4 x+2 a$ are α and $\frac{2}{\alpha}$ then find the value of a. $\mathbf{2}$

SECTION-C

8. Find values of a and b if $\left(x^{2}+1\right)$ is a factor of the polynomial $x^{4}+x^{3}+8 x^{2}+a x$ $+b$. 3
9. If truth and lie are zeros of the polynomial $p x^{2}+q x+r,(p \neq 0)$ and zeros are reciprocal to each other, Find the relation between p and r.

SECTION-D

10. On dividing the polynomial $x^{3}+2 x^{2}+k x+7$ by $(x-3)$, remainder comes out to be 25. Find quotient and the value of k . Also find the sum and product of zeros of the quotient so obtained.
[^0]
[^0]: Mathematics-X

