CHAPTER

2

Polynomials

KEY POINTS

- **1. Polynomial :** If x is a variable, n is a natural number and a_0 , a_1 , a_2 , a_3 , a_n are real numbers, then $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, $(a_n \ne 0)$ is called a polynomial in x.
- **2.** Polynomials of degree 1, 2 and 3 are called linear, quadratic and cubic polynomials respectively.
- 3. A quadratic polynomial is an algebraic expression of the form $ax^2 + bx + c$, where a, b, c are real numbers with $a \ne 0$.
- **4.** Zeros of a polynomial p(x) are precisely the x coordinates of the points where the graph of y = p(x) intersects the x-axis, i.e., x = a is a zero of polynomial p(x) if p(a) = 0
- **5.** A polynomial can have at most the same number of zeros as the degree of the polynomial.
- **6.** (i) If one zero of a quadratic polynomial p(x) is negative of the other, then coefficient of x is 0.
 - (ii) If zeroes of a quadratic polynomial p(x) are reciprocal of each other, then coefficient of $x^2 = \text{constant term}$.
- 7. Relationship between zeros and coefficients of a polynomial

If α and β are zeros of $p(x) = ax^2 + bx + c$ ($a \ne 0$), then

Sum of zeros =
$$\alpha + \beta = -\frac{b}{a}$$

Product of zeros =
$$\alpha \beta = \frac{c}{a}$$

8. If α , β are zeros of a quadratic polynomial p(x), then

$$p(x) = k [x^2 - (\text{sum of zeros}) x + \text{product of zeros}]$$

$$\Rightarrow p(x) = k [x^2 - (\alpha + \beta)x + \alpha\beta]$$
; where k is any non-zero real number.

- **9.** Graph of linear polynomial p(x) = ax + b is a straight line.
- 10. Division Algorithm states that given any polynomials p(x) and g(x), there exist polynomial q(x) and r(x) such that:

14

$$p(x) = g(x). q(x) + r(x); g(x) \neq 0,$$

[where either r(x) = 0 or degree r(x) < degree g(x)]

Graph of different types of polynomials:

- **Linear Polynomial :** The graph of a linear polynomial ax + b is a straight line, intersecting *x*-axis at one point.
- Quadratic Polynomial:
 - (i) Graph of a quadratic polynomial $p(x) = ax^2 + bx + c$ is a parabola open upwards like U, if a > 0 and intersect x-axis at maximum two distinct points.

(ii) Graph of a quodratic polynomial $p(x) = ax^2 + bx + c$ is a parabola open downwards like \cap , if a < 0 and intersect x-axis at maximum two distinct points.

(iii) Polynomial and its graph: In general a polynomial p(x) of degree n crosses the x-axis at most n points.

VERY SHORT ANSWER TYPE QUESTIONS

(b) 5 (c) $\frac{1}{6}$ (d) 6

value of k is

(a) 0

If one root of the polynomial $P(x) = 5x^2 + 13x + K$ is reciprocal of the other, then

$(\alpha + 1) (\beta + 1) = 0$, the $c = $
If one zero of the quadratic polynomial $x^2 + 3x + k$ is 2, then the value of k is (a) 10 (b) -10 (c) 5 (d) -5
If the zeroes of the quadratic polynomial $x^2 + (a+1)x + b$ are 2 and – 3, then (a) $a = -7$, $b = -1$ (b) $a = 5$, $b = -1$ (c) $a = 2$, $b = -6$ (d) $a = 0$
What should be added to the polynomial $x^2 - 5x + 4$, so that 3 is the zero of the resulting polynomial:
(a) 1 (b) 2 (c) 4 (d) 5
If α and β are the roots of the polynomial
$f(x) = x^2 + x + 1$, then $\frac{1}{\alpha} + \frac{1}{\beta} =$
If a quadratic polynomial $f(x)$ is not factorizable into linear factors, then it has no real zero. (True/False)
If a quadratic polynomial $f(x)$ is a square of a linear polynomial, then its two zeros are coincident. (True/False).
The product of the zeros of $x^3 + 4x^2 + x - 6$ is
(a) -4 (b) 4 (c) 6 (d) 6
Given that two of the zeros of the cubic polynomial $ax^3 + bx^2 + cx + d$ are 0, the third zero is
(a) $-\frac{b}{a}$ (b) $\frac{b}{a}$ (c) $\frac{c}{a}$ (d) $-\frac{d}{a}$
What will be the number of zeros of a linear polynomial $p(x)$ if its graph (i) passes through the origin. (ii) doesn't intersect or touch x -axis at any point?
Find the quadratic polynomial whose zeros are $(5+2\sqrt{3})$ and $(5-2\sqrt{3})$

- 13. If one zero of $p(x) = 4x^2 (8k^2 40k)x 9$ is negative of the other, find values of k.
- **14.** What number should be added to the polynomial $x^2 5x + 4$, so that 3 is a zero of polynomial so obtained.
- **15.** How many (*i*) maximum (*ii*) minimum number of zeroes can a quadratic polynomial have?
- **16.** What will be the number of real zeros of the polynomial $x^2 + 1$?
- 17. If α and β are zeros of polynomial $6x^2 7x 3$, then form a quadratic polynomial where zeros are 2α and 2β (CBSE)
- 18. If α and $\frac{1}{\alpha}$ are zeros of $4x^2 17x + k 4$, find the value of k.
- **19.** What will be the number of zeros of the polynomials whose graphs are parallel to (i) y-axis (ii) x-axis?
- **20.** What will be number of zeros of the polynomials whose graphs are either touching or intersecting the axis only at the points:

$$(i)$$
 $(-3,0)$, $(0,2)$ & $(3,0)$ (ii) $(0,4)$, $(0,0)$ and $(0,-4)$

SHORT ANSWER TYPE (I) QUESTIONS

- **21.** If -3 is one of the zeros of the polynomial $(k-1)x^2 + kx + 1$, find the value of k.
- 22. If the product of zeros of $ax^2 6x 6$ is 4, find the value of a. Hence find the sum of its zeros.
- **23.** If zeros of $x^2 kx + 6$ are in the ratio 3 : 2, find k.
- **24.** If one zero of the quadratic polynomial $(k^2 + k)x^2 + 68x + 6k$ is reciprocal of the other, find k.
- **25.** If α and β are the zeros of the polynomial $x^2 5x + m$ such that $\alpha \beta = 1$, find m. (CBSE)
- **26.** If the sum of squares of zeros of the polynomial $x^2 8x + k$ is 40, find the value of k.
- 27. If α and β are zeros of the polynomial $t^2 t 4$, form a quadratic polynomial whose zeros are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.
- **28.** What should be added to the polynomial $x^3 3x^2 + 6x 15$, so that it is completely divisible by x 3? (CBSE 2016)

- **29.** If *m* and *n* are the zeros of the polynomial $3x^2 + 11x 4$, find the value of $\frac{m}{n} + \frac{n}{m}$. (CBSE, 2012)
- **30.** Find a quadratic polynomial whose zeros are $\frac{3+\sqrt{5}}{5}$ and $\frac{3-\sqrt{5}}{5}$. (CBSE, 2013)

SHORT ANSWER TYPE (II) QUESTIONS

- **31.** If (k + y) is a factor of each of the polynomials $y^2 + 2y 15$ and $y^3 + a$, find the values of k and a.
- **32.** Obtain zeros of $4\sqrt{3} x^2 + 5x 2\sqrt{3}$ and verify relation between its zeroes and coefficients.
- 33. If $x^4 + 2x^3 + 8x^2 + 12x + 18$ is divided by $(x^2 + 5)$, remainder comes out to be (px + q), find values of p and q.
- **34.** -5 is one of the zeros of $2x^2 + px 15$, zeroes of $p(x^2 + x) + k$ are equal to each other. Find the value of k.
- **35.** Find the value of k such that $3x^2 + 2kx + x k 5$ has the sum of zeros as half of their product.
- **36.** If α and β are zeros of $y^2 + 5y + m$, find the value of m such that $(\alpha + \beta)^2 \alpha\beta = 24$
- 37. If α and β are zeros of $x^2 x 2$, find a polynomial whose zeros are $(2\alpha + 1)$ and $(2\beta + 1)$
- **38.** Find values of a and b so that $x^4 + x^3 + 8x^2 + ax + b$ is divisible by $x^2 + 1$.
- **39.** What must be subtracted from $8x^4 + 14x^3 2x^2 + 7x 8$ so that the resulting polynomial is exactly divisible by $4x^2 + 3x 2$?
- **40.** What must be added to $4x^4 + 2x^3 2x^2 + x 1$ so that the resulting polynomial is divisible by $x^2 2x 3$?

18)

LONG ANSWER TYPE QUESTIONS

- **41.** Find all zeros of the polynomial $2x^3 + x^2 6x 3$ if two of its zeroes are $\sqrt{3}$ and $-\sqrt{3}$.
- **42.** If $\sqrt{2}$ is a zero of $(6x^3 + \sqrt{2}x^2 10x 4\sqrt{2})$, find its other zeroes.
- **43.** If two zeros of $x^4 6x^3 26x^2 + 138x 35$ are $(2 \pm \sqrt{3})$, find other zeroes.
- **44.** On dividing the polynomial $x^3 5x^2 + 6x 4$ by a polynomial g(x), quotient and remainder are (x 3) and (-3x + 5) respectively. Find g(x)
- **45.** Obtain all zeros of the polynomial $2x^4 2x^3 7x^2 + 3x + 6$ if two factors of this polynomial are $\left(x \pm \sqrt{\frac{3}{2}}\right)$.
- **46.** If the polynomial $x^4 3x^3 6x^2 + kx 16$ is exactly divisible by $x^2 3x + 2$, then find the value of k. (CBSE, 2014)
- **47.** If the polynomial $x^4 6x^3 + 16x^2 25x + 10$ is divided by $x^2 2x + k$, then find the vlaue of k and a. (CBSE)
- **48.** If α and β are zeros of the polynomial $x^2 + 4x + 3$, find the polynomial whose zeros are $1 + \frac{\beta}{\alpha}$ and $1 + \frac{\alpha}{\beta}$. (CBSE)
- **49.** Find K, so that $x^2 + 2x + K$ is a factor of $2x^4 + x^3 14x^2 + 5x + 6$. Also find all the zeros of the two polynomials: (Exempler, HOTS)
- **50.** If $x \sqrt{5}$ is a factor of the cubic polynomial $x^3 3\sqrt{5}x^2 + 13x 3\sqrt{5}$, then find all the zeros of the polynomial.

ANSWERS AND HINTS

1. (b) 5

2. -1

3. (b) –10

4. (d) a = 0, b = -6

5. (b) 2

6. – 1

7. True

8. True

9. (c) 6

10. (a) $-\frac{b}{a}$

12.
$$x^2 - 10x + 13$$

13.
$$k = 0, 5$$

17.
$$3x^2 - 7x - 6$$

18.
$$k = 8$$

22.
$$a = -\frac{3}{2}$$
, sum of zeroes = -4

$$23. - 5, 5$$

27.
$$4t^2 + t - 1$$

28. On dividing $x^3 - 3x^2 + 6x - 15$ by x - 3, remainder is + 3, hence - 3 must be added to $x^3 - 3x^2 + 6x - 15$.

29.
$$\frac{m}{n} + \frac{n}{m} = \frac{m^2 + n^2}{mn} = \frac{(m+n)^2 - 2mn}{mn} = \frac{\left(-\frac{11}{3}\right)^2 - 2\left(-\frac{4}{3}\right)}{-\frac{4}{3}} = -\frac{145}{12}$$

30.
$$\alpha + \beta = \frac{6}{5}$$
, $\alpha\beta = \frac{4}{25}$, $25x^2 - 30x + 4$

31.
$$k = 3, -5$$
 and $a = 27, -125$

32.
$$-\frac{2}{\sqrt{3}}$$
, $\frac{\sqrt{3}}{4}$

33.
$$p = 2$$
, $q = 3$

34.
$$\frac{7}{4}$$

37.
$$x^2 - 4x - 5$$

38.
$$a = 1, b = 7$$

41.
$$\sqrt{3}$$
, $-\sqrt{3}$, $-\frac{1}{2}$

42.
$$-\frac{\sqrt{2}}{2}$$
, $\frac{-2\sqrt{2}}{3}$

(20)

44.
$$x^2 - 2x + 3$$

45. 2,
$$-1$$
, $\mp \sqrt{\frac{3}{2}}$

46.
$$x^2 - 3x + 2 = (x - 2)(x - 1)$$

 $P(1) = 0, K = 24.$

47. On dividing
$$x^4 - 6x^3 + 16x^2 - 25x + 10$$
 by $x^2 - 2x + k$ we get remainder $(2k-9)x + (10-8k+k^2)$

Given remainder = x + 9

$$2k-9 = 1 \implies k = 5$$

 $10 - 8k + k^2 = a \implies a = 10 - 40 + 25 = -5$
 $a = -5, k = 5$

48.
$$x^2 - \frac{16}{3}x + \frac{16}{3}$$
 or $\frac{1}{3}(3x^2 - 16x + 16)$

49. On dividing
$$2x^4 + x^3 - 14x^2 + 5x + 6$$
 by $x^2 + 2x + k$

We get $(7k + 21)x + 2k^2 + 8k + 6$ as remainder is zero.

$$\Rightarrow$$
 7k + 21 = 0 and $2k^2 + 8k + 6 = 0$

$$\Rightarrow$$
 $k = -3$ and $k = -1$ or -3

$$\Rightarrow$$
 $k = -3$

Zeros of
$$x^2 + 2x - 3$$
 are 1, -3 and $2x^4 + x^3 - 14x^2 + 5x + 6$ are 1, -3 , 2, $-\frac{1}{2}$

50.
$$\sqrt{5}$$
, $\sqrt{5} + \sqrt{2}$, $\sqrt{5} - \sqrt{2}$

PRACTICE-TEST

Polynomials

Time: 1 Hr. M.M.: 20

SECTION-A

- 1. If α and β are zeros of a quadratic polynomial p(x), then factorize p(x).
- 2. If α and β are zeros of $x^2 x 1$, find the value of $\frac{1}{\alpha} + \frac{1}{\beta}$.
- 3. If one of the zeros of quadratic polynomial $(K-1)x^2 + kx + 1$ is -3 then the value

of *K* is,

- (a) $\frac{4}{3}$ (b) $-\frac{4}{3}$ (c) $\frac{2}{3}$ (d) $-\frac{2}{3}$
- **4.** A quadratic polynomial, whose zeros are 3 and 4, is
 - (a) $x^2 x + 12$ (b) $x^2 + x + 12$
 - (c) $\frac{x^2}{2} \frac{x}{2} 6$ (d) $2x^2 + 2x 24$

SECTION-B

5. If α and β are zeros of $x^2 - (k+6)x + 2(2k-1)$. find the value of k if $\alpha + \beta = \frac{1}{2}\alpha\beta$.

6. Find a quadratic polynomial one of whose zeros is $(3+\sqrt{2})$ and the sum of its zeroes is 6.

7. If zeros of the polynomial $x^2 + 4x + 2a$ are α and $\frac{2}{\alpha}$ then find the value of a. 2

2

SECTION-C

- **8.** Find values of a and b if $(x^2 + 1)$ is a factor of the polynomial $x^4 + x^3 + 8x^2 + ax + b$.
- 9. If truth and lie are zeros of the polynomial $px^2 + qx + r$, $(p \ne 0)$ and zeros are reciprocal to each other, Find the relation between p and r.

SECTION-D

10. On dividing the polynomial $x^3 + 2x^2 + kx + 7$ by (x - 3), remainder comes out to be 25. Find quotient and the value of k. Also find the sum and product of zeros of the quotient so obtained.