Chapter 13

LIMITS AND DERIVATIVES

*»*With the Calculus as a key, Mathematics can be successfully applied to the
explanation of the course of Nature WHITEHEAD <+

13.1 Introduction

This chapter is an introduction to Calculus. Calculus is
branch of mathematics which mainly deals with the st
of change in the value of a function as the points in
domain change. First, we give an intuitive idea of deriva
(without actually defining it). Then we give a naive definiti
of limit and study some algebra of limits. Then we co
back to a definition of derivative and study some alge
of derivatives.We also obtain derivatives of certa
standard functions.

13.2 Intuitive Idea of Derivatives Sir Issac Newton

Physical experiments have confirmed that the body dropped ~ (1642-1727)
from a tall cliff covers a distance of #fetres irt seconds,
i.e., distancein metres covered by the body as a function of timeeconds is given
by s=4.9¢t

The adjoiningrable 13.1 gives the distance travelled in metres at various intervals
of time in seconds of a body dropped from a tall cliff.

The objective is to find the veloctiy of the body at tinse2 seconds from this

data. One way to approach this problem is to find the average velocity for various

intervals of time ending at= 2 seconds and hope that these throw some light on the
velocity att = 2 seconds.

Average velocity between=t, andt = t, equals distance travelled between
t =t, andt = t, seconds divided byt,(-t,). Hence the average velocity in the first
two seconds
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_ Distance travelled betwedp= &hd t = Table 131
- Time interval ¢, —t, ) L S
0 0
19.6- Om 1 4.
Sk L °
(2-0)s 15 11.025
Similarly, the average velocity between 1 L LSS
andt = 2 is 1.9 17.689
1.95 18.63225
19.6-4.9m
( LU 2 19.6
(2-Ds 2.05 20.59225
Likewise we compute the average velocitiy) 2.1 21.609
betweert = t, andt = 2 for varioug,. The following 2.2 23.716
Table 13.2 gives the average velocity, t = t, 25 30.625
seconds antl= 2 seconds. 3 44.1
4 78.4
Table 13.2
t 0 1 45 1.8 1.9 1.95 1.99

\ 9.8 14.7 17.15 | 1862 | 1911 | 19.355 19.551

FromTable 13.2, we observe that the average velocity is gradually increasing.
As we make the time intervals ending at2 smallerwe see that we get a better idea
of the velocity at = 2. Hoping that nothing really dramatic happens between 1.99
seconds and 2 seconds, we conclude that the average veloeit? aeconds is just
above 19.551/8.

This conclusion is somewhat strengthened by the following set of computation.
Compute the average velocities for various time intervals startirgzasecond#s
before the average velocitybetweent = 2 seconds ant= t, seconds is

Distance travelled between 2 secondstasecond:

Distance travelled i, seconds Distatrearelled in 2 seconc
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_ Distance travelled i, seconds 1

The following Table 13.3 gives the average veloocityn metres per second
betweent = 2 seconds ang seconds.

Table 13.3
4 3 25| 22| 21| 2.05 2.01
\Y 29.4 | 24.5/22.05| 20.58 20.0919.845| 19.649

Here again we note that if we take smaller time intervals startirgZtwe get
better idea of the velocity &t 2.

In the first set of computations, what we have done is to find average velocities
in increasing time intervals ending at2 and then hope that nothing dramatic happens
just beford = 2. In the second set of computations, we have found the average velocities
decreasing in time intervals ending a2 and then hope that nothing dramatic happens
just aftert = 2. Purely on the physical grounds, both these sequences of average
velocities must approach a common limie \dan safely conclude that the velocity of
the body at = 2 is between 19.551/sand 19.649n/s Technically we say that the
instantaneous velocity dt= 2 is between 19.55In/sand 19.649m/s As is
well-known, velocity is the rate of change of displacemétfence what we have
accomplished is the following. From the given data of distance covered at various time
instants we have estimated the rate of
change of the distance at a given instant A
of time.We say that theéerivativeof =~ f----=--=--------- B,
the distance functions4.9¢ att = 2
is between 19.551 and 19.649.

An alternate way of viewing this
limiting process is shown in Fig 13.1.
This is a plot of distancgof the body
from the top of the cliff versus the time '
t elapsed. In the limit as the sequence | -----ff---- s .- dC
of time intervalh,, h,, ..., approaches :
zero, the sequence of average velocitie : >t
approaches the same limit as does thz) / 2 2L 244 Time-axis
sequence of ratios Fig 13.1

s=49¢2

Distance-axis
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GB, C,B, GC3Bs
AC,"  AC, AC,’

where GB, =s, —s, is the distance travelled by the body in the time intdryalAC,,

etc. From the Fig 13.1 it is safe to conclude that this latter sequence approaches the
slope of the tangent to the curve at point A. In other words, the instantaneous velocity
v(t) of a body at timé = 2 is equal to the slope of the tangent of the carvd.3? at

t=2.

13.3 Limits

The above discussion clearly points towards the fact that we need to understand limiting
process in greater clarity/e study a few illustrative examples to gain some familiarity
with the concept of limits.

Consider the functiof(x) = x2. Observe that as takes values very close to 0,
the value of(x) also moves towards 0 (See Fig 2.10 Chapter 2)s&y

lim f (x)=0

(to be read as limit df(x) asx tends to zero equals zero). The limif Of) asx tends
to zero is to be thought of as the vale should assume at= 0.
In general ag — a, f (X) — |, thenl is calledlimit of the function {x) which is

symbolically written adim f (x)=1.
Consider the following functiog(x) = [x|,x = 0. Observe thaj(0) is not defined.

Computing the value @f(x) for values ok very %
near to 0, we see that the valuegfpf) moves A

towards 0. So'ki[n>O g(x) = 0. This is intuitively

clear from the graph oy = |x| for x #0.
(See Fig 2.13, Chapter 2).
Consider the following function.

2
h(x)= X _4, X% 2.
X—2

Compute the value df(x) for values of y/ ¢
xvery near to 2 (but not at 2). Convince yourself 7(-2,0) O (2,0)
that all these values are near to 4. This is Y
somewhat strengthened by considering the graph Y
of the function y= h(x) given here (Fig 13.2). Fig 13.2
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LIMITS AND DERIVATIVES 285

In all these illustrations the value which the function should assume at a given
pointx = adid not really depend on haaix tending taa. Note that there are essentially
two waysx could approach a numbar either from left or from right, i.e., all the
values ofx neara could be less thamor could be greater than This naturally leads
to two limits — theright hand limitand theleft hand limit Right hand limitof a
functionf(x) is that value of(x) which is dictated by the values fx) whenx tends
toafrom the right. Similarlytheleft hand limit To illustrate this, consel the function

1, x<0
(=1,
2, x>0 v
Graph of this function is shown in the Fig 13.3. Itis 1 — %)
clear that the value déft O dictated by values k) with 0,2) 7
x < 0 equals 1, i.e., the left hand limit bfx) at O is
Iim6 f(¥X=1 —(0,1)
X—
Similarly, the value of at 0 dictated by values ofy' ¢ >X
f (x) with x> 0 equals 2, i.e., the right hand limitfq) ¥
atOis Y
lim f(x)=2
x>0 Fig 13.3

In this case the right and left hand limits are different, and hence we say that the
limit of f (X) asx tends to zero does not exist (even though the function is defined at 0).

Summary
We say M f(x) is the expected value dfatx = a given the values dfnear
x to the left ofa. This value is called theft hand limitof f ata.
We say X'ET; f(X) is the expected value 6fatx = a given the values of

f nearx to the right ofa. This value is called theght hand limitof f(x) ata.
If the right and left hand limits coincide, we call that common value as the limit

of f(x) atx = a and denote it b)ELna f(x).

lllustration 1 Consider the functiof(x) = x + 10.We want to find the limit of this
function atx = 5. Let us compute the value of the functipg for x very near to 5.
Some of the points near and to the left of 5 are 4.9, 4.95, 4.99, 4.995. .ajwds. V

of the function at these points are tabulated below. Similarly, the real number 5.001,
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5.01, 5.1 are also points near and to the right of 5. Values of the function at these points
are also given in the Table 13.4.
Table 13.4

X 49 | 4.95 4.99 | 4.995 5.001( 5.01 5.1

f(x) 14.9| 1495 14.99| 14.995( 15.001f 15.01 151

From theTable 13.4, we deduce that valud(@j atx = 5 should be greater than
14.995 and less than 15.001 assuming nothing dramatic happens betwé&95
and 5.001. It is reasonable to assume that the value f{k}lta#x = 5 as dictated by
the numbers to the left of 5is 15, i.e.,

lim f(x)=15

X—5"

Similarly, whenx approaches 5 from the rigt{x) should be taking value 1&e.,
lim f(x)=15

x—5"

Hence, itis likely that the left hand limit f{k) and the right hand limit d¢x) are

both equal to 15. Thus,
)!Ir; f(x):)l([)ng f(X)=|)I(T5 f(x)=15

This conclusion about the limit being equal to 15 is somewhat strengthened by
seeing the graph of this function which is given in Fig 2.16, Chapter 2. In this figure, we
note that ax approaches 5 from either right or left, the graph of the function
f(x) = x +10 approaches the point (5, 15).

We observe that the value of the functior at5 also happens to be equal to 15.

lllustration 2 Consider the functiof(x) = x3. Let us try to find the limit of this
function atx = 1. Proceeding as in the previous case, we tabulate the veipe aif
x near 1This is given in the Table 13.5.

Table 13.5

X 0.9 0.99 0.999 1.001 101 11

f(x) | 0.729] 0.970299| 0.997002999 1.0030030(11.030301| 1.331

From this table, we deduce that valuef(@j at x = 1 should be greater than
0.997002999 and s than 1.003003001 assuming nothing dramatic happens between
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x =0.999 and 1.001. It is reasonable to assume that the valuef@f)thex = 1 as
dictated by the numbers to the leftof 1 is 1, i.e.,
lim f(x)=1.

X—1"

Similarly, whenxapproaches 1 from the rigii¢x) shouldbe taking value 1, i.e.,
lim f(x)=1,
x—1*

Hence, itis likely that the left hand limit ffk) and the right hand limit d¢x) are
both equal to 1. Thus,
lim f(x)=Ilim f(x):liml f(x)=1

x—1 x—1"

This conclusion about the limit being equal to 1 is somewhat strengthened by
seeing the graph of this function which is given in Fig 2.11, Chapter 2. In this figure, we
note that ax approaches 1 from either right or left, the graph of the function
f(x) = x*approaches the point (1, 1).

We observe, again, that the value of the functioxatl also happens to be
equal to 1.

lllustration 3 Consider the functiof(x) = 3x. Let us try to find the limit of this
function atx = 2. The following Table 13.6 is now self-explanatory.

Table 13.6
X 1.9 1.95 199 [ 1.999 | 2.001| 2.01 21
f(x) 5.7 5.85 5.97 | 5.997 6.003| 6.03 6.3
As before we observe that msapproaches 2 X

from either left or right, the value &fx) seem to (0, 6)
approach 6. We record this as
lim f(x):)l(@z f(x):IiT2 f(x)=6

X—2"
Its graph shown in Fig 13.4 strengthens tii
fact. o 2,0
Here again we note that the value of the function
atx = 2 coincides with the limit at= 2.

Illustration 4 Consider the constant function v
f(x) = 3. Let us try to find its limit ak = 2. This Y
function being the constant function takes the same Fig 13.4
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value (3, in this case) everywhere, i.e., its value at points close to 2 is 3. Hence
lim f(x):)l(l_r]} f(X)=|)I(T2 f(x)=3

Graph off(x) = 3 is anyway the line parallel #eaxis passing through (0, 3) and
is shown in Fig 2.9, Chapter 2. From this also it is clear that the required limit is 3. In

fact, it is easily observed théﬂ‘a f(x)=3 for any real numbea.

lllustration 5 Consider the functiofi(x) = x? + x. We want to findlim f(x). we
tabulate the values &fx) nearx =1 in Table 13.7.

Table 13.7
X 0.9 0.99 0.999 1.01 il 1.2

f(x) 1.71 1.9701 1.997001 2.0301 2.31 2.64

From this it is reasonable to deduce that Y
. . . A
lim f(x)_lxl_rpr f(x)_I!(r_rJl f(x)=2 .
From the graph of(x) = x2 + x 3
shown in the Fig 13.5, itis clear thatas y=fx)
approaches 1, the graph approaches (1, 2). 217
Here, again we observe that the 1 '
im 109 =1(2) X< : >X
2 1701 2 3 4 5
. v
.Now, convmcg yourself of the Y Fig135
following three facts:
lim x? =1, limx=1and limx+ 1= 2
x—1 x—1 x—1
Then lim %%+ lim x:1+1=2=lim[x2+x]_
x—1 x—1 x—1
. . _ _ L N 2
Also leinﬂx I)l(inl(x+1)_1.2_ 2= XI[E[X(X+ 1)] = )I([E[x + x] )
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lllustration 6 Consider the functiof(x) = sinx. We are interested ifim sin x,

X——
2

where the angle is measured in radians.

Here, we tabulate the (approximate) valud(®f nearg (Table 13.8) From

this, we may deduce that

lim f(x)=lim f(x)=lim f(x)=1
x—>g x—% X—>g .

Further this is supported by the graphf@f) = sinxwhich is given in the Fig 3.8

(Chapter 3). In this case too, we observe firat sinx = 1.

yoT
4
Table 13.8
X T 01 T 001 T 001 Tioa
2 2 2 2
f(x) | 0.9950 0.9999 0.9999 0.9950

lllustration 7 Consider the functiof(x) = x + cosx. We want to find thel)(im)f (X)-
Here we tabulate the (approximate) valud(xfnear O (Table 13.9).
Table 13.9
X -0.1 —-0.01 —0.001 0.001 0.01 0.1

f(x) 0.9850 | 0.98995 0.9989995( 1.0009995 1.00995 1.0950

From theTable 13.9, we may deduce that
lim (x)= lim. f(x):l)l(TO f(x)=1
In this case too, we observe tt!(h_n}t(l)f (x) =f(0)=1.

Now, can you convince yourself that

lim[x+cosx]= lim x+ limcosX s indeed true?
x—0 Xx—0 X—0 ’
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1 .
lllustration 8 Consider the functiorf (X) =z for x> 0. We want to knovdxlrrz)f (X).

Here, observe that the domain of the function is given to be all positive real
numbers. Hence, when we tabulate the valu§x)pit does not make sense to talk of
x approaching 0 from the left. Below we tabulate the values of the function for positive
x close to 0 (in this table denotes any positive integer).

From theTable 13.10 given below, we see thatxagends to 0f(x) becomes
larger and lager What we mean here is that the valué&(xfmay be made lger than
any given number.

Table 13.10
X 1 0.1 0.01 10"
f(x) 1 100 10000 10>

Mathematicallywe say
imf (X)=+
x—0 ( )
We also remark that we will not come across such limits in this course.

lllustration 9 We want to findlim f (x), where

Xx—2, x<0
f(x)=90 , x=0
X+2, x>0

As usual we make a tablehear O withf(x). Observe that for negative valuesxof
we need to evaluate— 2 and for positive values, we need to evalxaite?.

Table 13.1
X -0.1 —0.01 —0.001 0.001 0.01 0.1
f(x) -2.1 —-2.01 —2.001 2.001 2.01 2.1

From the first three entries of thallle 13.11, we deduce that the value of the
function is decreasing to —2 and hence.

lim f(x)=-2

x—0"
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From the last three entires of the table we deduce that the value of the function

is increasing from 2 and hence Y
lim f =2
x'_>o+ (x) (0,2)
Since the left and right hand limits at O do not coincide,
we say that the limit of the function at 0 does not existX’' € p >X
Graph of this function is given in the Fig13.6. Here,
we remark that the value of the functionxat O is well 0,-2)
defined and is, indeed, equal to 0, but the limit of the function
atx = 0 is not even defined. Y
) ) ) ) - Fig 13.6
lllustration 10 As a final illustration, we fmolX'T1 f (X),
where
X+2 x#1
f(x)=
0 x=1
Table 13.12
X 0.9 0.99 0.999 1.001 1.01 1.1
f(x) 2.9 2.99 2.999 3.001 3.01 3.1

As usual we tabulate the valuest@) for x near 1. From the values fk) for
x less than 1, it seems that the function should take value 3 &, i.e.,

lim f (x)=3
x—1 Y
Similarly, the value of(x) should be 3 as dic- A
tated by values dix) atx greater than 1. i.e. 0,3) ¢ - -
lim f(x)=3 :
X1 (x)=3. (0,2) .

But then the left and right hand limits coincide
and hence

y=fx)

X' >
lim f(x)=lim f(x)=lim f(x)=3 2,00 O (1,0
x—1 x—1" x—1
Graph of function given in Fig 13.7 strengthens Y’
our deduction about the limit. Here, we Fig 13.7
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note that in general, at a given point the value of the function and its limit may be
different (even when bbtare defined).

13.3.1 Algebra of limisIn the above illustrations, we have observed that the limiting
process respects addition, subtraction, multiplication and division as long as the limits
and functions under consideration are well defined. This is not a coincidence. In fact,
below we formalise these as a theorem without proof.

Theorem 1Letf andg be two functions such that bo)l(illna f(x) and !(I_rpa g(x) exist.
Then
(i) Limit of sum of two functions is sum of the limits of the functions, i.e.,

lim[f) +g (] = lIm 1) + lim g(x).

(i) Limit of difference of two functions is difference of the limits of the functions, i.e.,
lim [fo) — g] = im0 — lim g(x.

(i)  Limit of product of two functions is product of the limits of the functions, i.e.,
lim [f(x) . g09] = lim f(9. lim g(x).

(iv) Limit of quotient of two functions is quotient of the limits of the functions (whenever
the denominator is non zero), i.e.,

10 _mf(x)
i lim 903

X—a

In particular as a special case of (jii), whgis the constant function
such thatg(x) = 4, for some real numbey , we have

lim[ (&) (x)]=Alim f(x)

X—a X—a

In the next two subsections, we illustrate how to exploit this theorem to evaluate
limits of special types of functions.

13.3.2 Limits of polynomials and rational function& function f is said to be a
polynomial function of degreef(x) = a, + ax +ax* +. . . +a x", whereas are real
numbers such that # 0 for some natural number n.

We know thatlim x = a. Hence
X—a
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lim x> =lim (x x)=lim xlim x= a a= &

X—a X->a x> a > a

An easy exercise in induction ortells us that

limx"=a"

X—a

Now, let f (x)=a,+ aXx+ & X +...+ g R be a polynomial function. Thinking

of each ofa,, a x & ¥,..., a X as a function, we have
lim £ (x) = lim [a0+aix+ aX+.+a )E']

= lima, +lim a x+lim a ¥ +... +lim a X

X—a X—=>a hd X—a

= gy +alim x+ alim ¥ +..+ glim X

X—a

a,+aatad+..+ ad
t(a)

(Make sure that you understand the justification for each step in the above!)

9(x)
A functionf is said to be a rational functionf(k) = W , whereg(x) andh(x)

are polynomials such thi¢x) = 0. Then

im f (x)=lim 9(¥) _ Liinag(x)_ g(a)
i N )_Ixaah(x)_ imh(x) K9

X—a

However, ifh(a) = O, there are two scenarios — (i) wigga) = 0 and (i) when
g(a) = 0. In the former case we say that the limit does not exist. In the latter case we
can writeg(x) = (x —a)*g, (X), wherek is the maximum of powers ok (- a) in g(x)
Similarly, h(x) = (x —a)'h, (x) ash (a) = 0. Now, if k> |, we have

lim f (x)= img(x) lim (x4 a(
= Imh( - im (x-a) ()
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lim (x—a)*™"

X—a

a(¥_0g(a)_,
imh(x)  h(a

If k<, the limit is not defined.

Example 1Find the limits: (i) im[x*=x*+1] (i) Im[x(x+1)]
(i) "”]1[1+ X+ 4.+ xlo] _

Solution The required limits are all limits of some polynomial functions. Hence the
limits are the values of the function at the prescribed poirashaie

@ IMpe—se+1]=P-P+1=1
) lm[x(x+1)]=3(3+ D=y 4= 1z

(i) lim |:1+ X+ X 4.+ Xlo] :1+(—l)+(—1)2 (- ])10

X—-1
=1-1+1.4+4 1= 1
Example 2Find the limits:
i [ X+l g 3¢ —4x% + 4x

0553 x+100 U
o lim _£ : lim _ﬂ
(i) x2| X° = 4% + 4X ) x>2| x* —5x+ 6

jm| %22 % }
V) -1 x> =x X-3X+2x]

Solution All the functions under consideration are rational functions. Hence, we first

0
evaluate these functions at the prescribed points. If this is of thegqrme try to

rewrite the function cancelling the factors which are causing the limit to be of

the f 9
e form.
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2 2
(i) We havelim X+ _t+1__2
x-1x+100 1+ 100 10:

0
(i) Evaluating the function at 2, it is of the for'Bq.

y im X —4X°+4x i x(x—2)°
ence 2 w_a x-2(X+2)(x—2)
— lim X(X_Z) asx# 2
x-2 (X+2)
_ 2222 _o_,
T 242,mAN

0
(i) Evaluating the function at 2, we get it of the fogn

2_ . (x+2)(x=2)
Hence lim 24 _ lim == =202

23— A+ ax . 72 x(x=2)°

- (x+2)  2+2 4
= Iim = =—
x-2X(x-2) 2(2-2 0

which is not defined.

0
(iv) Evaluating the function at 2, we get it of the for*gu.

Hence x—2 X2—5X+6 T oxo2 (X—Z)(X— 3)
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(v) First, we rewrite the function as a rational function.

X—2 1 X—2 3 1
[xz—x_ X —3% + ZX} ~ | x(x-1) X(X2—3X+ 2)

[ X2 —4x+ 4 1}
T x(x=1)(x-2)

| X -4x+3
T x(x-1)(x-2)

0
Evaluating the function at 1, we get it of the fogn

lim X2—2_ 4 Iimﬂ

Hence o1 % —x ¥ —3x+ 2x|” »1 x(x-1)(x-2)
-3)(x-1

= lim (x=3)(x-1)

T o1 x(x-1)(x-2)

im x—3 1-3
= eix(x-2) T 1(1-2) T2

We remark that we could cancel the tepm-(1) in the above evaluation because

x#1.

Evaluation of an important limit which will be used in the sequghien as a
theorem below
Theorem 2For any positive integen,

n n
_ x"-a .
lim =na"?,
x—a X—a

Remark The expression in the above theorem for the limit is true evemsifany
rational number andis positive.
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Proof Dividing (x" —a") by (x —a), we see that
X'—a'= (x-a) X"+ x2a+xPaz+ ... +x a2+ ard)
n n

.o X' —a .
Thus, lim =lim (x*t +x2a + x 3 a2 + ... +x &2+ a)
Xx—a X—a X—a

=a-'+ad?+. .. +a*? (a) +ta™

=a-t+a-t+. . 4at+ art (n terms)

= na"t
Example 3 Evaluate:
X1 N
(i) lIm—p— (ii) ”ml—l-—xl
xel)(1 -1 x—0 X
Solution (i) We have
5 [A15 W 10
jm XL [ 52, X
-1 x0-1  x=t x-1 x—1

x-1| Xx=1 x-1 x-1

15 (1}4+ 10(1y (by the theorem above)

15- 10—§
N 2

(i) Puty=1 +x,sothaty ->1 as x— 0.

N _ . -1
1+x-1 lim y

Then M= — =Wy
11

2_12

= fim Y1

y-1 y-1

1 1 1
E(l)2 (by the remark above¥F >
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13.4 Limits of Trigonometric Functions
The following facts (stated as theorems) about functions in general come in handy in
calculating limits of some trigonometric functions.

Theorem 3Letfand g be two real valued functions with the same domain such that

f(X) < g(x for all x in the domain of definition, For song if both !('Lna f(x) and

lim g(x) exist, thenliM f(x) < M g(x). This is illustrated in Fig 13.8.

Y
A
| y =g(x)
I
I
I y=flx)
5 i >X

Fig 13.8

Theorem 4 (Sandwich Theorem)Let f, g and h be real functions such that
f(x) < g( X) < h(x) for all xin the common domain of definition. For some real number

a,if MM () =1= 1M h(x), then liM g(x) =1. This is illustrated in Fig 13.9.

Ske——————

0

Fig 13.9

Given below is a beautiful geometric proof of the following important
inequality relating trigonometric functions.

sinx n
cosx<==<1 for O<|x|<§ *)
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Proof We know that sin (%) = — sinx and cos{& X) = cosx. Hence, it is sufficient
- B
to prove the inequality fob < X< > C
In the Fig 13.10, O is the centre of the unit circle such Ah
A

the angleAOC is xradians and 0 x < % . Line segments B Aand

CD are perpendiculars to O&urther, joinAC. Then

Area of AOAC < Area of sectorQAC < Area of A OAB. Fig 13.10
ie. LoacD< X n(0AY<ioAAB.
2 2n 2
i.,e., CD<x.O0OA<AB.
From A OCD,

_ CD . B B _AB
sinx= OA (since OC = OA) and hence CD = G#x. Also tanx= OA and

hence AB = OA. tanx. Thus
OA sinx < OA. x< OA. tanx.
Since length OAs positive, we have
sinx < x < tanx.

T
Since 0 <E’ sinxis positive and thus by dividing throughout by sjwe have

X 1
1<——<-——. Taking reciprocals throughout, we have
sSinX  cosx

sinx
cosx<——«< 1
X

which complete the proof.
Theorem 5The following are two important limits.

0 Iimwzl_ (ii) lim - COX_o

x—0 X x—0 X

Proof (i) The inequality in (*) says that the functih’X is sandwichethetween the
X

function cosx and the constant function which takes value 1.
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Further since L'TO cosx = 1, we see that the proof of (i) of the theorem is
complete by sandwich theorem.

To prove (i), we recall the trigonometric identity 1 — gs2 siﬁ[—j.

N | X

Then

im
x—0 X x—0 X x—0 X
2
sin 2 »
= lim .Iimsin[—J:l.O: 0
x—0 5 x—0 2
2

X
Observe that we have implicitly used the fact that o is equivalent to§ — 0. This

X
may be justified by putting = PY

E e 4Evaluate: (i) limSmX i) lm 2

xample valu . (l) x—0 Sin 2x (”) x=0 X
_sindx . |sindx 2

Solution (I) x—0 Sin 2X x%0|: 4x sin2x :|

.| sin4x sin X
= 2.Iim +
x=0|  4x 2X

.| sin4x . sin X
= 2.lim + lim
4x—0| 44X 2x-0|  2X

=211=2(@x— 0,4 — 0and 2— 0)
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.. . tanx . sinx . sinXx
(i) We have lim—— = 1lim — i .
x—0 X x—0 XCOSX x50 X  x-0C0SX

A general rule that needs to be keptin mind while evaluating limits is the following.

Say given that the Iimit!(iina exists and we want to evaluate this. First we check

9(x)
the value off (a) andg(a). If both are 0, then we see if we can get the factor which
is causing the terms to vanish, i.e., see if we can \@je= f, (x) f,(X) so that
f, (@ = 0 andf, (a) # 0. Similarly we writeg(x) = g, (X) 9,(x), whereg,(a) = 0 and
g,(a) # 0. Cancel out the common factors fré(x) andg(x) (if possible) and write

) _ e
g(x) = a(x whereq(x) = 0.
Then lim 09 _ p(a)

|EXERCISE 13.1|

Evaluate the following limits in Exercises 1 to 22.

- : 22 o
1. Iimx+3 2. lim} x—— 3 limar
x=3 -y 7 r—l1
. 4x+3 10, 5 5_
x4 X—2 x— -1 Xx—1 N X
. 3x°-x-10 . x*-81 . ax+b
7. lim ———— 8. lim ——— 9. lim
x->2 X" -4 x->3 2X° —5X—-3 x>0 cX+1
1
.oz8-1
10. lim = 11. lim w,a+ b+ c#0
=t S x-1 X% + bx+ a
75 -1
“+2 sinax sinax
12, jim X2 13. lim 14. lim >—=, a,b#0
X2 X4 2 x>0 bx x—0 sinbx

2018-19



302 MATHEMATICS
im —= i
T Ly B 16. Ix'Ton_x
18. lim w 19 lim xsecx
x=0  bsinx x—0
20. lim Ma, b,a+b#0, 21.lim(cosecx— cok
x—0 ax+ sinbx x=0
. tan2
Iml -
. . 2X+ 3,
22, Find Iy ) analm (0, where  (9={ 53
— f (x) x2 -1, x<1
ing lim f (x =
24. Find m , Where 21 x>1
. l—l Xx#0
25, Evaluate'X"_T},f(X), where f (x)=1 x
0, x=0
. l, X#0
26. Find [!Tmf(x),wheref(x)= |X]
0, x=0
27. Find im £ (X), where f (x)=| x|-5
a+bx, x<1
28. Supposef (x)=14, x=1
b-—ax, x>1

and if legjlf (x) =f (1) what are possible valuesatndb?

2018-19
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29. Leta,a, ...,a be fixed real numbers and define a function
f(x)=(x-a)(x-a)..(*x a).

is lim ? lim
What is X_)aif (X) ? For some # a,, a,, ..., @, computel'T! f(x).

IX+1, x<O
30. If f(x)={0,  x=0.
|x|—1, x>0

For what value (s) o& does!im f (x) exists?

. o f(x)-2 i
31. If the functionf(x) SatISersl)!Tlﬁ =T, evaluate')!r_“>l f(x).

mé+n  x<0

32. If f(x)=y m+m  0< X1 For what integersandn does botHim f (x)
nc+m  x>1

and lim (x) exist?

13.5 Derivatives

We have seen in the Section 13.2, that by knowing the position of a body at various
time intervals it is possible to find the rate at which the position of the body is changing.
Itis of very general interest to know a certain parameter at various instants of time and
try to finding the rate at which it is changing. There are several real life situations
where such a process needs to be carried out. For instance, people maintaining a
reservoir need to know when will a reservoir overflow knowing the depth of the water

at several instances of time, Rocket Scientists need to compute the precise velocity
with which the satellite needs to be shot out from the rocket knowing the height of the
rocket at various times. Financial institutions need to predict the changes in the value of
a particular stock knowing its present value. In these, and many such cases it is desirable
to know how a particular parameter is changing with respect to some other parameter.
The heart of the matter is derivative of a function at a given point in its domain
of definition.
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Definition 1 Suppose f is a real valued function and a is a point in its domain of
definition. The derivative of f at a is defined by

im f(a+h)- f(a)
h—0 h

provided this limit exists. Derivative ofX) at a is denoted by(#&).
Observe thdt'(a) quantifies the change iiifx) atawith respect to.

Example 5 Find the derivative at= 2 of the functiorf(x) = 3x.

Solution We have

r@ = im f (2+hz— f(2)_ IhiLnoe,(zmz_s(z)

_im 86 i P ima =3
h—0 h h—0 h h—0

The derivative of the functiorx&tx =2 is 3.

Example 6Find the derivative of the functid(x) = 2 + 3x— 5 atx= —1. Also prove
thatf “(0) + ¥"(-1) = 0.

Solution We first find the derivatives dfx) atx = -1 and ak = 0. We have

D) = im f(-1+ hz_ f(-1)

o [2(—1+h)2+3(—1+ h)— 5H - ¥+ 8 )- %

h—0 h

2

lim =lim (2h-1)=2(0)-1=-1

h—0 h h—0

£ (0+h)- £(0)

lim
h—0

and f'(0)

. [2(0+n) +3(0+h)- 8- 19+ §9- §

h—0 h
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2
= im 23N i (2h+3)=2(0)+ 3= 3

h—0 h h—0
Clearly f'(0)+3f'(-)=0
RemarkAt this stage note that evaluating derivative at a point involves effective use
of various rules, limits are subjected to. The following illustrates this.
Example 7Find the derivative of sikatx = 0.

Solution Let f(x) = sinx. Then

, . f(0+h)-f(0)
o=

sin(0+h)-sin(Q _ im sinh_1
il h “h0 h

Example 8Find the derivative of(x) = 3 atx = 0 and a = 3.

Solution Since the derivative measures the change in function, intuitively it is clear
that the derivative of the constant function must be zero at every point. This is indeed,
supported by the following computation.

f(0+h)-f(0) . 3-3 0

£(0)= (i h =i =iy

. oo f(B+h)—f(3)  3-3

Similartty  £'(3) = lim » lim =
We now present a geomet- Y\

ric interpretation of derivative of a
function at a point. Let=1(x) be fath) p=mmmmmmn--- Qlath, flath))
afunction and let P =(f(a)) and
Q = (@ +h,f(a+h) be two points
close to each other on the graph Aok -- P (4, fla))
of this function. The Fig 131lis
now self explanatory y=fx)
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f(a+h)- f(a)

We know that f’(a)= lim

From the triangle PQR, it is clear that the ratio whose limit we are taking is
precisely equal to tan(QPR) which is the slope of the chord PQ. In the limiting process,
ash tends to 0, the point Q tends to P and we have

f(ath)— f
im @)= f(a) _,OR
h—0 h o->P PR

This is equivalent to the fact that the chord PQ tends to the tangent at P of the
curvey =f(x). Thus the limit turns out to be equal to the slope of the tangent. Hence

f’(a)=tany .
For a given functiof we can find the derivative at every point. If the derivative

exists at every point, it defines a new function called the derivative=afrmally, we
define derivative of a function as follows.

Definition 2 Suppose f is a real valued function, the function defined by
f h)— f
O — £(9
h—0 h

wheever the limit exists is defined to be the derivative of f at x and is denoted by
f(x). This definition of derivative is also called the first principle of derivative.

Thus f‘(x):LiTof(XJr hz_ f()

Clearly the domain of definition 6f(x) is wherever the above limit exists. There
are different notations for derivative of a function. Sometifigg is denoted by

d d
&(f (X)) or if y="f(x), it is denoted byd—il( . This is referred to as derivativef¢f)

ory with respect to x. It is also denoted byflfx ). Further, derivative of at x = a

or df ﬂ
a dx a or even dx .

Example 9Find the derivative of(x) = 10x.
f (x+h)— f(x)
h

d
is also denoted by f(x)

Solution Sincef” ( x) = Ihlrr})
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100 h)-10()
h—0 h

L lim (10)=10
h—0 h

Example 10Find the derivative of(x) = x2.

f(x+h)— f(x)
h

Solution We havef’(x) = Ih'”])
= lim (h+2x)=2x
h—0 h h—0

Example 11 Find the derivative of the constant functibix) = a for a fixed real
numbera.

f (x+h)— f(x)
h

Solution We havef’(x) = Ihlrr])

—Ilm"JI a—Iim =0
h—0 h _h~>0 a ash=0

ol N ]

1
Example 12Find the derivative of(x) = X

f (x+h)— f(x)
h

Solution We have f'(x) = Ihlrrg

1 1

- (x+h x
h—0 h
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13.5.1Algebra of derivative of functionsSince the very definition of derivatives
involve limits in a rather direct fashion, we expect the rules for derivatives to follow
closely that of limits. We collect these in the following theorem.

Theorem 5Letf andg be two functions such that their derivatives are defined in a
common domain. Then

() Derivative of sum of two functions is sum of the derivatives of the
functions.

d d d
&[f(X)JF Q(X)]=& 3+ dX.

(i) Derivative of difference of two functions is difference of the derivatives of
the functions.

d d d
&[f (X)—Q(X)]=$( f(ﬁ—&QX.

(i)  Derivative of product of two functions is given by the followprgduct
rule.

d d d
&[f(x) . g(X)]=$( f(X. A+ f(i(-& d X

(iv) Derivative of quotient of two functions is given by the followgptient
rule (whenever the denominator is non—zero).

d d
i f(X) Z&f(x)-g(x)_ f()()g(d))
dx{ o(¥ (9(0)*

The proofs of these follow essentially from the analogous theorem for limits. We
will not prove these here. As in the case of limits this theorem tells us how to compute
derivatives of special types of functions. The last two statements in the theorem may
be restated in the following fashion which aids in recalling them easily:

Let u= f(x) andv=g (X). Then

(uv) = u'v+uv

This is referred to a Leibnitz rule for differentiating product of functions or the
product rule. Similarly, the quotient rule is
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u ’_ u'v— uv
vV
Now, let us tackle derivatives of some standard functions.
It is easy to see that the derivative of the funcfip) = x is the constant

f(x+h)—f(x) . x+h-x
function 1. This is becaudé(x)= lim (eeh)= 709 _ lim ———
h—0 h h-0 h
h—0 '

We use this and the above theorem to compute the derivative of
f(x) = 1 =x + .... +x (ten terms). By {iof the above theorem

df(x)  d
i~ dx (X+...+X) (ten terms)

—ix+ +ixt t
= 3 S (ten terms)

= 1+...+1 (ten terms) = 10.
We note that this limit may be evaluated using product rule \\érite
f(x) = 1 = uv, whereu is the constant function taking value 10 everywhere and
v(X) = x. Here,f(x) = 1x = uv we know that the derivative af equals 0Also
derivative ofv(x) = x equals 1. Thus by the product rule we have

f'(x) = (10x) =(uv) = U+ u¥=0. % 10.1= 10

On similar lines the derivative dfx) = X2 may be evaluatedWe have
f(x) = x2 = x .xand hence

df d d d
o (x.x):F(x).x+ x—( %

& X dx

= 1.X+ x.1= 2x.
More generally, we have the following theorem.

Theorem 6Derivative off(x) = x"is nx"~*for any positive integen.

Proof By definition of the derivative function, we have

()= lim O 10 (e )= X

h—0 h h—0
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Binomial theorem tells thak¢- h)"= ("Co )x"+("C,)x™*h+ ..+ (" G, )h"and
hence (x + h)" —x"=h(nX*-1+... +h"-1). Thus

= lim
h—0 h

H n-1 -1
= Ll_rg(nx +..+H ) = L

Alternatively, we may also prove this by inductionroand the product rule as
follows. The result is true fon = 1, which has been proved earliéle have

d, . d n
&(x ) = &(x.x 1)

d

= a((x).(x"‘l)+ x%((x”‘l) (by product rule)

=1x"14 x(( n—1) >(“2) (by induction hypothesis)

= X"+ (n-1) Xt =t
RemarkThe above theorem is true for all powersdfe., n can be any real number
(but we will not prove it here).

13.5.2 Derivative of polynomials and trigonometric function$Ve start with the
following theorem which tells us the derivative of a polynomial function.

Theorem 7Letf(x)= a X"+ a, , X" +...+ @ x+ g be a polynomial function, where
asare all real numbers argg] = 0. Then, the derivative function is given by

df (X - -
%zn%fﬂ(n—l)aq_l% ‘.4 2ax+a.

Proof of this theorem is just putting together part (i) of Theorem Fla@drem 6.
Example 13Compute the derivative ofx8° — x5° + x.
Solution A direct application of the above theorem tells that the derivative of the

above function is500x®° — 55¢* + 1
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Example 14 Find the derivative dfx) = 1 +x + x>+ x +... +x¥ atx = 1.
Solution A direct application of the above Theorem 6 tells that the derivative of the
above functionis 1 +2+ 32+ . . . + 50¢°. At x = 1 the value of this function equals

1+2(1)+3(19+...+50(11)9=1+2+3+...+50550)%=1275.

x+1
Example 15Find the derivative of(x) = e

Solution Clearly this function is defined everywhere excepk at 0. We use the
quotient rule withu=x+ 1 andv = x. Henceu’= 1 andv’= 1. Therefore

df(x)zﬂ[il]:_d(_u]_u’v_ w 1x)-(x+D1 1

dx dx| x dx v V2 X2 s NG

Example 16Compute the derivative of sin

Solution Let f(x) = sinx. Then

df(9 _ . FOh)=f(x_ . sin(xr B sin( 3
dx h—0 h h—0
{2X+ hj r( hj
2co Sin —
= lim 2 2 ) (using formula for sin A- sin B)
h—0 h

sin—
_ Iimcos[x+—j.|im—2= coxX .E cox
= h>0 2 | h=0 D .
2
Example 17Compute the derivative of tan
Solution Let f(x) = tanx. Then
df (X f(x+h)— f(x
—():Iim ( ) ()=Iim

dx h—0 h h—0

1{sin(x+ h) sinx}

= lim=
~ h-oh| cos(x+h) cosx

tan( x+ h)— tan(
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i sin(x+ h) cosx— co§ x+ h) sirx
= h0 hcos( x+ h) cosx

sin(x+ h-x)
~ h-0 heos( x+ h) cosx

(using formula for sin (A + B))

. sinh | 1
— Iim [im

h-0 h "h-0 cog x+ h) cosx

_11

- 1. =seé x
co< X '

Example 18Compute the derivative dfx) = sir? x.
Solution We use the Leibnitz product rule to evaluate this.

ar () =£(sinxsinx)
dx  dx

= (sinx) sinx+ sinx( sinx
=(cosx) sinx+ simn( cox)

=2sinX cOX= Sin X-

|[EXERCISE 13.2|

1. Find the derivative of? — 2 atx = 10.
2. Find the derivative of atx = 1.
3. Find the derivative of 98atx = 100.
4. Find the derivative of the following functions from first principle.

i) x*-27 (i) (x-1)(x-2)

. N o x+1

(iit) 2 (iv) 1
5. For the function

00 99
f (x)=x1—+x—+. A — X+ 1
100 99 2
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Prove thatf’(1)=100f"( 0.

6. Find the derivative of" + ax™t+ & X 2+.. .+ &1 % & for some fixed real

numbera.
7. For some constangsandb, find the derivative of
. - 2 .. X—a
(i) (x—a)(x-b (ii) (ax2+ b) (iii) b
n _ an
8. Find the derivative o% for some constara.
9. Find the derivative of
3
i) 2x= (i) (5x°+3x-1)(x-1)
(i) x3(5+3x) (iv) x°(3-6x7)
2 X2
x4 (3-4x>® INnE— —
V) ( ) W x+1 3x-1
10. Find the derivative of casfrom first principle.
11. Find the derivative of the following functions:
() sinxcosx (i) secx (i) 5secx+ 4cos
(iv) cosecx (v) 3cotx+ 5cosex
(V) 5sinx— 6cox+ 7 (Vii) 2tanx— 7sex

Miscellaneous Examples
Example 19Find the derivative of from the first principle, wherkis given by

2X+ 3
X—2

() f(= (ii) f(X)=X+§

Solution (i) Note that function is not defined at 2. But, we have

2(X+ h)+3 2%+ 3
f h)— f N
f/(x):Lin,E) (X+ k)] (X)ZLIITE) X+ h—2h X—2
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(2x+ 2h+ 3)(x— —( 2x+ J(x+ h- 2

— lim
h—0

— lim
h—0

_ lim
— h—=0

Again, note that the functiori” is also not defined at= 2.

h(x-2)(x+h-2)

(2x+3)(x=2)+ 2h(x— )—( 2+ JI(x - H 2% B

h(x-2)(x+h-2)

-7 7

(x-2) (x+h-2)  (x=2)

(i) The function is not defined atx0. But, we have

I

3

| =
1

>

+

\H

|

(=

|
5

|
f:
3
1
|
X
—~
X
+ H
=)
=

1, x—x-h] . 1 1
ﬁ{m X( X+ h)_:uinw_r{h(l_ X % B

1
N-—

Again, note that the functiori” is not defined at = 0.
Example 20Find the derivative of(x) from the first principle, wherg&Xx) is

() sinx+ cosx

Solution (i) we hav

(i) xsinx
f (x+h)— f(x)
h

ef'(x) =

sin(x+ h)+ cog x+ h)— sinx- cox

h

H

sk

Ct

h
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_im sinh(cosx— sinx)+ sin{ cos— )+ cog cds )

h—0 h
[ cosh— _
= lim th(cosx— sinx)+ Iimsinxu +lim cosxw
h—0 h h—0 h h—0 h
= CcOosx— sinx
) ‘ _ f(x+h)=f(x) . (x+ hsin(x h- ssin x
O 0 =
i (x+ h)(sin x cosh+ sinh cos)— X sirx
= Al h
i xsin x(cosh— )+ x cos< sirt H sirk cos sih  cas
= Al h
. xsinx( cosh— . inh
=lim ( 3+I|mh_>0 xcosxo L jim (sinxcosh+ sinh cox)
h—s0 h h—0
=XCOSX+ sinx
Example 21Compute derivative of
(i) f(x) = sin X (i) g(x) = cotx
Solution (i) Recall the trigonometric formula sirx2 2 sinx cosx. Thus
are) _ i(Zsinx COX) = 21( sirx cos)
dx dx dx

= 2[(sinx), cosx+ sink( COSX),}

=2[(cosx) cosc+ sin(— sin) |

= 2(co§ x— sirf x)

COSX
(i) By definition, gx) = COtX=m. We use the quotient rule on this function

o _ dg d d( cosx
wherever it is defined. ——=—(Cotx)=—| ——
dx dx dx sin x
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_ (cosx) (sinx }- (cosc )(sin”;
- (sinx)?

_ (=sinx)(sinx)- (cosx ) (cox
B (sinx)?

sin’ x+ cog x
= —fz—coseéx
sin“ x
. . , 1
Alternatively, this may be computed by noting thatx= anx Here, we use the fact

that the derivative ofan xis seé x which we saw in Example 17 and also that the
derivative of the constant function is 0.

@ = i(COtX)= i i
dx dx dx| tan x

1) (tanx )~ (1) (tanx )
- (tanx ¥

_ (0)(tanx )~ (sex )

(tanx ¥
—seé x
- = —coseéx
tan? x

Example 22Find the derivative of

. X°—COSX .. X+CoSX
) — 85— i
U sinx (i) tanx
. x> — COSX . . :
Solution (i) Let h(x):W . We use the quotient rule on this function wherever
it is defined.
H(x) = (x°> —cosx) sinx— (X — cosx ) (sin”’

(sinx)?
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(5x* + sinx) sinx— (X — COSX ) cox
sin x

—x°cosx+ 5¢ sinx+ 1
(sinx)?

X+ COSX
(i) We use quotient rule on the functieﬁta? wherever it is defined.

(x+cosx) tanx— (x+ cosx )(tarx”
(tanx ¥

h(Y) =

_ (1-sinx)tanx— (x+ cosx )sécx
B (tanx ¥

Miscellaneous Exercise on Chapter 13
1. Find the derivative of the following functions from first principle:

(i) —x (i) (- (i) sin(x+1) (V) cos k— %)

Find the derivative of the following functions (it is to be understoodithatc, d,
p, g, rand s are fixed non-zero constants amdindn are integers):

’
2. (x + a) 3. (px+ Q) [;JFSJ 4. (ax+ b)(cxt d)2
1
ax+b 1+ 1
5. 6. —X e
cx+d 1 axt + bx+ c
X
ax+b v a b
—— N PX o+ r — —— +COSX
& pXC + X+ I o ax+b 10. 577352
11. 4x-2 12. (ax+b)" 13. (ax+b)"(cx+ g™
. COSX
14. sin k + a) 15. cosecx cot X . :
1+ sinx
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SinX+ cosx

secx— 1

17. — 18. 19. gjpn
SiNX— cosx sexx+ 1 sinex
a+ bsin x sin(x+ a) _ ‘
20, ——— 21, ——— 22. x*(5sinX— 3O’
c+ dcosx COSX
23. (x*+1)cosx 24. (ax®+sinx)( p+ qcosy
. 2 T
4X + 5sinx X Co§ —
25. (x+cosx) (x— tanx) 26. -———— 27. 4
3X+ 7Cc0osx :
sinx
28 X 29 t 30 ‘
T tar . (x+secx) (x— tanx) e W

Summary

¢ The expected value of the function as dictated by the points to the left of a
point defines the left hand limit of the function at that point. Similarly the right

hand limit.

# Limit of a function at a point is the common value of the left and right hand

limits, if they coirctide.

@ For a functiorf and a real numbex, !('Lna f(x) andf (a) may not be same (In

fact, one may be defined and not the other one).
# For functiond andg the following holds:

!(ima[f(x)ir g(>¢]=|xima f(3+lim ¢ X
!(ima[f(x).g(x)]:lxima f(3.lim d X
|im[f(x)}=lxi.inaf()()

Lot ] i o3

¢ Following are some of the standard limits

n n
_ x"-a _
lim =npa™*
Xx—a X—a
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sinx _

lim——=1
x—0 X

. 1-cosx
lim =0
x—0 X

® The derivative of a functiohata is defined by

(a)=lim @+ N=1(3
h—0 h

# Derivative of a functiori at any poink is defined by

f,(X):df(x):Iim f(x+ h— f(R
dx h-o0 h

# For functionsu andv the following holds:

(uxv)y=uzxVv

(uv)'=Uw uv

’

u) _uv-uv : :
[vj =7 provided all are defined.

¢ Following are some of the standard derivatives.

d

(M — )dw—l
dX(x) n
i(sinx)zcosx
dx

i(cosx =— sinx
dx

Historical Note

In the history of mathematics two names are prominent to share the credit for
inventing calculus, Issac Newton (1642 — 1727) aid Geibnitz (1646 —1717).

Both of them independently invented calculus around the seventeenth century.
After the advent of calculus many mathematicians contributed for further
development of calculus. The rigorous concept is mainly attributed to the great

2018-19



320 MATHEMATICS

mathematician#\.L. Cauchy J.L.Lagrange and Karl ¥ierstrass. Cauchy gave

the foundation of calculus as we have now generally accepted in our textbooks.
Cauchy used DAlemberts limit concept to define the derivative of a function.
Starting with definition of a limit, Cauchy gave examples such as the limit of

sina LY S G

— for ¢= 0. He wroteA— » and called the limit for
a X |

i — 0,the “function derive’ey’ for f” (x)".

Before 1900, it was thought that calculus is quite difficult to teach. So calculus
became beyond the reach of youngsters. But just in 1900, John Perry and others
in England started propagating the view that essential ideas and methods of calculus
were simple and could be taught even in schools. Griffin, pioneered the
teaching of calculus to first year students. This was regarded as one of the most
daring act in those days.

Today not only the mathematics but many other subjects such as Physics,
Chemistry Economics and Biological Sciences are enjoying the fruits of calculus.

4
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