PRINCIPLE OF
MATHEMATICAL INDUCTION

**Analysis and natural philosophy owe their most important discoveries to
this fruitful means, which is called induction. Newton was indebted
to it for his theorem of the binomial and the principle of
universal gravity. — LAPLACE ¢

4.1 Introduction

One key basisfor mathematical thinking is deductive rea-
soning. Aninformal, and exampl e of deductive reasoning,
borrowed from the study of logic, isan argument expressed
in three statements:

(@) Socratesisa man.

(b)  All men are mortal, therefore,

(c) Socratesismortal.

If statements (a) and (b) are true, then the truth of (c) is
established. To make this simple mathematical example,
we could write:

(i) Eightisdivisibleby two.

(i)  Any number divisible by twoisan even number,

therefore,

(i)  Eight isan even number.

Thus, deduction in a nutshell is given a statement to be proven, often called a
conjecture or a theorem in mathematics, valid deductive steps are derived and a
proof may or may not be established, i.e., deduction is the application of a general
case to a particular case.

In contrast to deduction, inductive reasoning depends on working with each case,
and developing a conjecture by observing incidences till we have observed each and
every case. It is frequently used in mathematics and is a key aspect of scientific
reasoning, where collecting and analysing datais the norm. Thus, in simplelanguage,
we can say the word induction means the generalisation from particular cases or facts.

G. Peano
(1858-1932)
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PRINCIPLE OF MATHEMATICAL INDUCTION 87

Inagebraor in other discipline of mathematics, there are certain results or state-
ments that are formulated in terms of n, where n is a positive integer. To prove such
statements the well-suited principle that is used—based on the specific technique, is
known asthe principle of mathematical induction.

4.2 Motivation

In mathematics, we use aform of complete induction called mathematical induction.
To understand the basic principles of mathematical induction, suppose a set of thin
rectangular tiles are placed as shown in Fig 4.1.

Fig4.1

When thefirst tileis pushed in theindicated direction, all thetileswill fall. To be
absolutely surethat all thetileswill fall, it issufficient to know that

(8 Thefirsttilefalls, and

(b) Intheevent that any tile fallsits successor necessarily falls.

Thisisthe underlying principle of mathematical induction.

We know, the set of natural numbers N is a special ordered subset of the real
numbers. In fact, N isthe smallest subset of R with the following property:

A set Sissadtobeaninductiveset if 1€ Sand x+ 1 e Swhenever xe S. Since
N isthe smallest subset of R which isan inductive set, it follows that any subset of R
that is an inductive set must contain N.

[llustration

Supposewewish to find theformulafor the sum of positiveintegersi, 2, 3,...,n, that is,
aformulawhich will givethevaueof 1 + 2+ 3whenn =3, thevaluel + 2 + 3 + 4,
when n = 4 and so on and suppose that in some manner we are led to believe that the

n(n+1)
2

formulal+2+ 3+..+n= is the correct one.

How can thisformulaactually be proved?We can, of course, verify the statement
for asmany positiveintegral values of n aswe like, but this processwill not prove the
formulafor all values of n. What is needed is some kind of chain reaction which will
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88 MATHEMATICS

have the effect that once the formula is proved for a particular positive integer the
formulawill automatically follow for the next positiveinteger and the next indefinitely.
Such areaction may be considered as produced by the method of mathematical induction.

4.3 ThePrincipleof Mathematical Induction
Suppose there is a given statement P(n) involving the natural number n such that

(i) The statement is true for n = 1, i.e,, P(1) is true, and

(ii) If the statement is true for n = k (where k is some positive integer), then
the statement is also true for n = k + 1, i.e, truth of P(k) implies the
truth of P (k + 1).

Then, P(n) is true for all natural numbers n.

Property (i) is ssimply a statement of fact. There may be situations when a
statement is true for all n > 4. In this case, step 1 will start from n = 4 and we shall
verify theresult for n =4, i.e., P(4).

Property (ii) isaconditional property. It does not assert that the given statement
istruefor n =Kk, but only that if it istruefor n =k, thenitisalso truefor n=k+1. So,
to provethat the property holds, only provethat conditional proposition:

If the statement istrue for n = k, then it isalso truefor n=k + 1.

Thisissometimesreferred to astheinductive step. The assumption that the given
statement is true for n = k in this inductive step is called the inductive hypothesis.

For example, frequently in mathematics, aformulawill be discovered that appears

tofit apattern like
1=12=1
4=22=1+3
9=3*=1+3+5
16=4=1+3+5+7, etc.

It is worth to be noted that the sum of the first two odd natural numbers is the
square of second natural number, sum of the first three odd natural numbers is the
square of third natural number and so on.Thus, from this pattern it appears that

1+3+5+7+..+(2n-1)=nr?i.g
the sum of the first n odd natural numbersis the square of n.

Let uswrite

P(n:1+3+5+7+..+(2n-1)=n2

We wish to prove that P(n) istrue for al n.

Thefirst step in aproof that uses mathematical induction isto prove that
P (1) istrue. Thisstep is called the basic step. Obviously
1=1%i.e, P(1)istrue.
The next step is called the inductive step. Here, we suppose that P (K) istrue for some

2018-19



PRINCIPLE OF MATHEMATICAL INDUCTION 89

positive integer k and we need to prove that P (k + 1) istrue. Since P (K) is true, we
have

1+3+5+7+ ..+ (2k-1) =k )

Consider
1+3+5+7+...+(2k-1) +{2(k+1) -1} -2
=k+ (2k+1) = (k+ 1)2 [Using (1)]

Therefore, P (k + 1) istrue and the inductive proof is now completed.
Hence P(n) is true for all natural numbers n.

Example 1 For al n> 1, prove that

n(n+21) (2n+1)
5 :

Solution Let the given statement be P(n), i.e.,

n(n+1)(2n+1)
6

11+ (2x1+1)  1x2x3
6 N
Assume that P(K) is true for some positive integer k, i.e.,

12+ 22+ P+ 42+, + 2 = w - (1)

We shall now prove that P(k + 1) is also true. Now, we have
(12 +22 +3% +42 +..+k )+ (k+1)?
k(k+2) (2k+1)+(k+1)2
6
k(k+1) (2k +1)+ 6(k +1)*
6

1P+ 22+ F+H+. . +n° =

P(n): 12+ 22+ 32+ 42+...+n? =

=1 which istrue.

Forn=1, P(1):1=

[Using (1)]

(k+1) (2k* + 7k +6)
6

_ (k+D(k+1+D{2(k+D)+1
- 6
Thus P(k + 1) is true, whenever P (K) is true.
Hence, from the principle of mathematical induction, the statement P(n) istrue
for al natural numbersn.
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90 MATHEMATICS

Example 2 Prove that 2"> n for al positive integers n.
Solution Let P(n): 2">n
When n =1, 2>1. Hence P(1) istrue.
Assume that P(K) istrue for any positive integer k, i.e.,

28>k - (1)
We shall now prove that P(k +1) is true whenever P(K) is true.
Multiplying both sides of (1) by 2, we get

2.2 > 2k

e, 2K1>2k=k+k>k+1

Therefore, P(k + 1) is true when P(K) is true. Hence, by principle of mathematical
induction, P(n) istrue for every positive integer n.

Example 3 For dl n> 1, prove that
1 1 1 1 n

—t—+—+..+ S
12 23 34 nn+1l) n+1-

Solution We can write
1 n

11
4 =
P): 12723734 " nn+D) n+l

We note that P(l):izizi , which istrue. Thus, P(n) istruefor n= 1.
12 2 1+1
Assume that P(K) is true for some natural number k,
1 1 1 1 k
ie., E+E+ﬁ+'"+—k(k+1):k_+1 . (D
We need to prove that P(k + 1) is true whenever P(K) is true. We have
1 1/ 1 1

— et —t—F..+ +
12 23 34 k(k+1) (k+1) (k+2)

1 1 1 1 1
..+ +
[1.2 23 34 k(k+1)} (k+1) (K+2)

k 1
=K+l (kD (k+2) [Using (1)]
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_ kk+2+1  (K+2k+D  (k+D)® k+1_ k+1
T k+)(k+2)  (k+D(k+2) T (k+1)(k+2) k+2 (k+1)+1

Thus P(k + 1) istrue whenever P(K) is true. Hence, by the principle of mathematical
induction, P(n) istruefor all natural numbers.

Example 4 For every positive integer n, provethat 7" —3"isdivisible by 4.
Solution We can write
P(n) : 7"—3"isdivisible by 4.
We note that
P(1): 7 -3 =4 which isdivisible by 4. Thus P(n) istruefor n=1
Let P(K) be true for some natural number k,
i.e., P(k) : 7*—3<isdivisible by 4.
We can write 7 — 3= 4d, whered € N.
Now, we wish to prove that P(k + 1) is true whenever P(K) is true.
NOW 7(k+ 1)_3(k+ 1) = 7(k +1) _7.3k + 7.3k_3(k +1)
=7(7=39 + (7-3)3* =7(4d) + (7 —3)3*
=7(4d) +4.3< = 4(7d + 3
From the last line, we see that 7 *9 — 3k *V jsdivisible by 4. Thus, P(k + 1) istrue

when P(K) is true. Therefore, by principle of mathematical induction the statement is
true for every positive integer n.

Example 5 Prove that (1 + x)" > (1 + nx), for all natural number n, where x > — 1.
Solution Let P(n) be the given statement,
i.e, P(n): (1+x)">(1+nx), forx>-1
We note that P(n) istruewhenn =1, since ( 1+x) = (1 + x) for x> -1
Assume that

P(K): (1 +x)¥* > (1 +kx),x>—1istrue. - (1)
We want to prove that P(k + 1) is true for x > —1 whenever P(K) is true. .. (2
Consider theidentity

(LT+x)ri=1+x(1+X)
Giventhat x>-1,s0 (1+x) > 0.

Therefore, by using (1 + X)* > (1 + kx), we have
L+x) 1> (1+ k(1 +x)
i.e A +x)*1> (1+ X+ kx+ ke). - (3)
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92 MATHEMATICS

Here k is a natural number and x> > 0 so that kx* > 0. Therefore
(1 +x+kx+kd) > (1+x+ kx),
and so we obtain
A+x<t >(1+x+kx)
ie. (1+x<t > [1+((1+KkxX
Thus, the statement in (2) is established. Hence, by the principle of mathematical
induction, P(n) istruefor all natural numbers.

Example 6 Prove that
2.7"+3.5"-5 isdivisibleby 24, for all ne N.

Solution Let the statement P(n) be defined as
P(n) : 27"+ 3.5"-5isdivisibleby 24.
We note that P(n) istruefor n=1, since 2.7 + 3.5-5 = 24, which is divisible by 24.
Assume that P(K) is true
i.e. 27+ 35<-5=24q,whenge N - ()
Now, we wish to prove that P(k + 1) is true whenever P(k) is true.
We have
2.7+ 351 5 =27 7'+ 35¢. 5 -5
=7[27+35-5-35“+5]+35<.5-5
=7[24q-3.5+5] + 1555
=7x%x249—-215+35+155-5
=7 x24q—-6.5<+ 30
=7x249—-6 (5-5)
=7 x 249 —6 (4p) [(B*—5) isamultiple of 4 (why?)]
=7 x24q—-24p
=24 (79-p)
=24 xr;r=7q9-0p, issome natural number. .. (2

The expression onthe R.H.S. of (1) isdivisible by 24. Thus P(k + 1) istrue whenever
P(K) is true.

Hence, by principle of mathematical induction, P(n) istruefor all ne N.
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Example 7 Prove that
n3
P+22+ .. +n > E,ne N
Solution Let P(n) be the given statement.

3
n
i.e,P(n):12+22+ .. +n? >§, ne N

13
We note that P(n) is true for n = 1 since 1* > 3

Assume that P(K) is true

k3
i.e Pk):12+22+ .. +k > 3 (D

We shall now prove that P(k + 1) is true whenever P(K) is true.
Wehave 12+ 22+ 3 + ... + K2+ (k + 1)?

= (12+22+...+ kz) + (k+1) > k—; + (k+1)° [by (1)]

1
=3 [K®+ 3K2 + 6k + 3]

=?,1))[(k+1)3+3k+ 2] > % k+1)3

Therefore, P(k+ 1) isa so truewhenever P(K) istrue. Hence, by mathematical induction
P(n) istruefor all ne N.

Example 8 Prove the rule of exponents (ab)" = a"b"
by using principle of mathematical induction for every natural number.

Solution Let P(n) be the given statement
i.e.  P(n) : (ab)" = ab".
We note that P(n) is true for n = 1 since (ab)!= a'b".
Let P(k) be true, i.e.,
(ab)x = ab* - (1)
We shall now prove that P(k + 1) is true whenever P(K) is true.
Now, we have

(ab)*"*= (ab)* (ab)
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Therefore, P(k + 1) is also true whenever P(K) is true. Hence, by principle of math-

MATHEMATICS

= (a“ b (ab) [by (D]

= (a. ab) (b*. bY) = a't . bt

ematical induction, P(n) istruefor all ne N.

Provethefollowing by using the principle of mathematical induction for all ne N:

1.

10.

11.

| EXERCISE 4.1 |

n_
1+3+32+...+3”—1=(3—21)

2
13+23+33+ +n3: [M)
1 1 1 2n

1+ + +..t =
1+2) (@+2+3 @+2+4+3+..n) (n+1)"

n(n+1)(n+2)(n+3)

123 + 234 +...+ n(n+1) (n+2) = s

(2n-1)3"+3
B il
n(n+1)(n+ 2)}
r-a—

1.3+23?+3.33+...+ n.3"=

12+23+34+..+ n(n+l) = [

n(4n? + 6n—1)

1.3+ 35+ 5.7 +...+ (2n-1) (2n+1) = 5

12+222+32°+ ..+n2"=(n-1) 21 + 2,

1 1 1 1 1
S+ —=1-=
2 4 8 2" 2"
1 1 1 1 n

—+—+ 4.+ =

25 58 811 Bn-DY(Bn+2) (6n+4)"

1 1 1 1 n(n+3)
+ + ..+ =

123 234 345 7 nn+D)(n+2) 4n+1)(n+2)"
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13.

14.

15.

16.

17.

18.

19.
20.
21.

22.
23.
24.
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a(r"-1
r-1 -~

[1+§j[1+EJ [1+Zj...[1+ (Zn;rl) j: (n+1)?
1 4 9 n
[1+}j[1+ij [1+}j...[1+1j= (n+1) .

1 2 3 n

n(2n-1(2n+1)
3 :

1 1 1 1 n
e e e S =
14 47 7.0 (B3n-2)(3n+1) (3n+1)"

a+ar+ar?+.. . +amt=

P+F+5 + .+ (2n-1)? =

1 1 1 1 n
— et ——t—..+ =
35 57 79 (2n+)(2n+3) 3(2n+3) -

1
1+2+3+...+n< §(2n+1)2.

n(n+1) (n+5)isamultipleof 3.
101+ 1isdivisible by 11.

x2n —y2jsdivisible by x +y.

32 _8n—9isdivisible by 8.
41" —14"isamultiple of 27.
(2n+7)<(n+3)>2

Summary

® Onekey basisfor mathematical thinking is deductive reasoning. In contrast to

deduction, inductive reasoning depends on working with different cases and
developing a conjecture by observing incidences till we have observed each
and every case. Thus, in simple language we can say the word ‘induction’
means the generalisation from particular cases or facts.

@ Theprinciple of mathematical induction isone such tool which can be used to

prove a wide variety of mathematical statements. Each such statement is
assumed as P(n) associated with positive integer n, for which the correctness
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for the case n = 1 is examined. Then assuming the truth of P(k) for some
positive integer k, the truth of P (k+1) is established.

Historical Note

Unlike other concepts and methods, proof by mathematical inductionisnot
theinvention of aparticular individua at afixed moment. It issaid that the principle
of mathematical induction was known by the Pythagoreans.

The French mathematician Blaise Pascal is credited with the origin of the
principle of mathematical induction.

The name induction was used by the English mathematician John Wallis.

L ater the principle was employed to provide aproof of the binomial theorem.

DeMorgan contributed many accomplishmentsin thefield of mathematics
on many different subjects. He was the first person to define and name
“mathematical induction” and developed De Morgan's rule to determine the
convergence of a mathematical series.

G. Peano undertook the task of deducing the properties of natural numbers
from a set of explicitly stated assumptions, now known as Peano’s axioms.The
principle of mathematical induction isarestatement of one of the Peano’saxioms.
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