Chapter 3

(TRIGONOMETRICFUNCTIONS)

+*A mathematician knows how to solve a problem,
he can not solve it. — MILNE <¢

3.1 Introduction

Theword ‘trigonometry’ is derived from the Greek words
‘trigon’ and ‘metron’ and it means ‘ measuring the sides of
atriangle’. The subject was originally developed to solve
geometric problemsinvolving triangles. It was studied by
sea captains for navigation, surveyor to map out the new
lands, by engineers and others. Currently, trigonometry is
used in many areas such as the science of seismology,
designing electric circuits, describing the state of an atom,
predicting the heights of tides in the ocean, analysing a
musical tone and in many other areas.

In earlier classes, we have studied the trigonometric AryaBhatt
ratios of acute angles as the ratio of the sides of a right (476-550)
angled triangle. We have also studied the trigonometric identities and application of
trigonometric ratios in solving the problems related to heights and distances. In this
Chapter, wewill generalisethe concept of trigonometric ratiosto trigonometric functions
and study their properties.

3.2 Angles
Angleisameasure of rotation of agiven ray about itsinitial point. Theoriginal ray is

B Vert% Initial side

Vertex Initial side
(i)Positive angle Fig 3.1 (ii) Negative angle
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50 MATHEMATICS

called the initial side and the final position of the ray after rotation is called the
terminal side of the angle. The point of rotation is called the vertex. If the direction of
rotationisanticlockwise, theangleissaid to be positiveand if the direction of rotation
isclockwise, thentheangleisnegative (Fig 3.1).

The measure of an angle is the amount of ) Initial side \A
rotation performed to get theterminal sidefrom Terminal Side ,B

the initial side. There are several units for
measuring angles. The definition of an angle Fig 3.2

suggests a unit, viz. one complete revolution from the position of the initial side as
indicated inFig 3.2.

Thisisoften convenient for large angles. For example, we can say that arapidly
spinning wheel is making an angle of say 15 revolution per second. We shall describe
two other units of measurement of an angle which are most commonly used, viz.
degree measure and radian measure.

1 th
3.2.1 Degree measure If arotation from theinitia sideto termina sjdeis(%) of

arevolution, the angle is said to have ameasure of one degree, written as1°. A degreeis
dividedinto 60 minutes, and aminuteisdivided into 60 seconds. Onesixtieth of adegreeis
called aminute, written as 1, and one sixtieth of aminuteiscalled asecond, written as1”.
Thus, 1° =60, 1" =60"

Some of the angles whose measures are 360°,180°, 270°, 420°, — 30°, — 420° are
showninFig3.3.

(o] (o]
360 A O 270
@ S5 B< 180 v S>A A
B

(@)

(e}
420 o A A
A NZ_30° > 420
B
Fig 3.3 B
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TRIGONOMETRIC FUNCTIONS 51

3.2.2 Radian measure Thereisanother unit for measurement of an angle, called
the radian measure. Angle subtended at the centre by an arc of length 1 unit in a
unit circle (circle of radius 1 unit) is said to have a measure of 1 radian. In the Fig
3.4(i) to (iv), OA istheinitial sideand OB istheterminal side. The figures show the

1 1
angles whose measures are 1 radian, —1 radian, 15 radian and —15 radian.

(ii)

A
Voo )]
Al
2
o
(iv)

Fig 3.4(i)to(iv)
We know that the circumference of a circle of radius 1 unit is 2x. Thus, one
completerevolution of theinitial side subtendsan angle of 2r radian.

Moregenerally, inacircleof radiusr, an arc of length r will subtend an angle of
1radian. It iswell-known that equal arcs of acircle subtend equal angle at the centre.
Sincein acircle of radiusr, an arc of length r subtends an angle whose measureis 1
radian, an arc of length | will subtend an anglewhose measureis F radian. Thus, if in

acircleof radiusr, an arc of length | subtends an angle 6 radian at the centre, we have

06 =—orl =re.
r

2018-19



52 MATHEMATICS

3.2.3 Relation between radian and real numbers N
Consider the unit circlewith centre O. Let A beany point 1
on the circle. Consider OA as initial side of an angle.
Thenthelength of an arc of thecirclewill givetheradian 11
measure of the angle which the arc will subtend at the
centre of the circle. Consider the line PAQ which is
tangent to the circle at A. Let the point A represent the 0
real number zero, APrepresents positive real number and
AQ represents negative real numbers (Fig 3.5). If we

-1
rope theline AP in the anticlockwise direction along the
circle,and AQintheclockwisedirection, then every real
number will correspond to a radian measure and i

conversely. Thus, radian measures and real numbers can Fig 3.5 Yo
be considered as one and the same.

3.2.4 Relation between degree and radian Since acircle subtends at the centre
an angle whose radian measure is 2r and its degree measure is 360°, it follows that

2 radian =360° or wradian = 180°
The above relation enables us to express a radian measure in terms of degree
measure and a degree measure in terms of radian measure. Using approximate value

of was 7 we have
lradian= =57° 16 approximately.
Also 1° = ﬁ) radian = 0.01746 radian approximately.

The relation between degree measures and radian measure of some common angles
aregiveninthefollowingtable:

Degree | 30° 45° 60° 90° 180° 270° 360°
Redi i & i i £
N s 4 3 2 & 2 | =
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TRIGONOMETRIC FUNCTIONS 53

Notational Convention
Since angles are measured either in degrees or in radians, we adopt the convention
that whenever we write angle 6°, we mean the angle whose degree measureis 6 and
whenever we write angle 3, we mean the angle whose radian measure is f3.

Note that when an angleis expressed in radians, theword ‘radian’ isfrequently
omitted. Thus, 7 =180° and % =45° arewritten with the understanding that = and %

are radian measures. Thus, we can say that

/I
Radian measure = 180 ¥ Degree measure

180
Degree measure = o x Radian measure

Example 1 Convert 40° 20" into radian measure.
Solution We know that 180° = = radian.

H 400 20/ _401‘d - i g_ ad —@ ad
ence = 3 egree— 180)( 3 radian = 540 radian.
Theref a0 20 = 2 i

ererore = 540 radian.

Example 2 Convert 6 radians into degree measure.
Solution  We know that = radian = 180°.

_ 180 1080x 7
Hence 6 radians = — X6 degree = ——_—degree
T 22
7 7x60
= 343Edegree =343+ minute [as1° =60
2

=343°+38 + bTl minute [as 1’ =60"]

=343° + 38 +10.9” =343°38 11” approximately.
Hence 6 radians = 343° 38" 11” approximately.

Example 3 Findtheradiusof the circlein which acentral angle of 60° interceptsan

22
arcof length37.4cm (use m =7).
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54 MATHEMATICS

Solution Herel = 37.4 cm and 6 = 60° = O radian = &
ution Herel =37.4cmand @ = = 180 3
|
Hence, by r= 6 , we have
37.4x3  37.4x3x7
r= = =35.7cm
i 22

Example4 Theminute hand of awatchis 1.5 cmlong. How far doesitstip movein
40 minutes? (Use &t = 3.14).

Solution In 60 minutes, the minute hand of awatch completesonerevolution. Therefore,

2 2
in 40 minutes, the minute hand turnsthrough 3 of arevolution. Therefore, 0 = 3 x 360°

4
or ?n radian. Hence, the required distance travelled is given by

l=r09 = 1.5><4—;cm=27tcm=2><3.14cm:6.280m.

Example5 If the arcs of the same lengthsin two circles subtend angles 65°and 110°
at the centre, find the ratio of their radii.

Solution Letr, andr, bethe radii of the two circles. Given that

T 13n
0, = 65° = ——~Xx65 = —— radian

180 36
T 221
= = —x110 = — i

and 6, =110 180 36 radian
Let | be the length of each of thearc. Then| = r 6, = r.6,, which gives

36 Xr, = 36 Xr,, i.e, = 13
Hence rir,=22:13.

| EXERCISE 3.1
1. Findtheradian measures corresponding to the following degree measures:
(i) 25° (i) —47°30 (i) 240° (iv) 520°
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TRIGONOMETRIC FUNCTIONS 55

2. Find the degree measures corresponding to the following radian measures

(Use n=§).
7

u o - T
0) g (i) - (i) = )
3. A wheel makes360 revolutionsin one minute. Through how many radians does

it turn in one second?
4. Find the degree measure of the angle subtended at the centre of a circle of

22
radius 100 cm by an arc of length 22 cm (Use © = 7).

5. Inacircle of diameter 40 cm, the length of achord is 20 cm. Find the length of
minor arc of the chord.
6. If in two circles, arcs of the same length subtend angles 60° and 75° at the
centre, find the ratio of their radii.
7. Findtheangleinradian through which apendulum swingsif itslengthis 75 cm
and th e tip describes an arc of length
(i) 10cm (i) 15cm (i) 21cm

3.3 Trigonometric Functions

In earlier classes, we have studied trigonometric ratios for acute angles asthe ratio of
sides of aright angled triangle. We will now extend the definition of trigonometric
ratiosto any anglein termsof radian measure and study them astrigonometric functions.

Consider a unit circle with centre v
at origin of the coordinate axes. Let A
P (a, b) be any point on the circle with
angleAOP=xradian, i.e., length of arc DB p (a, b)
AP=x(Fig 3.6).
We definecosx=aandsinx= b 1 . ¥
Since AOMPisaright triangle, wehave _ C1, 0)C X \,(1,0) -
OM? + MP? = OPPor @2 + P =1 X S olam Ja X
Thus, for every point on the unit circle,
we have
a2+ b?=1o0rco?x +snx=1 oD
Since one complete revolution
subtends an angle of 2r radian at the ;{/
centre of the circle, ZAOB = % Fig 3.6
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56 MATHEMATICS

3
ZAOC=mand ZAOD = g .All angleswhich areintegral multiples of g arecalled

guadrantal angles. The coordinates of the points A, B, C and D are, respectively,
(1,0),(0,1), (-1, 0) and (O, -1). Therefore, for quadrantal angles, we have

cos0° =1 sin0° =0,
cosE—O sinE—l
2 2
cost=-1 snt=0
coss—n—o sins—n— 1
2 2
cos2r =1 sn2n=0

Now, if we take one complete revolution from the point P, we again come back to
same point P. Thus, we also observe that if x increases (or decreases) by any integral
multiple of 27, the values of sine and cosine functions do not change. Thus,

sn(2nt +x) =sinX;ne Z, cos(2nmt + X) = cosX:ne Z
Further,sinx=0,if X=0,tx, £ 21, 3x, ..., i.e, whenxisanintegra multiple of ©

3n 5n

+ —, ... 1.e, cos x vanishes when x is an odd

T
=0,if X=%—=,+ —
and cos x = 0O, if 5 5 >

multiple of g . Thus

sin x = 0implies X = nx, where n is any integer
T
cos x =0 impliesx = (2n + 1) EX where n is any integer.
We now define other trigonometric functionsin terms of sine and cosine functions:

1
COSEC X = Snx’ X # nm, where nis any integer.

SeCX = Cosx’x;t @2n+1) %,wheren isany integer.
sinx T . .

tanx = Cosx,x;t(Zn +1)E,Wheren|sany|nteger.

cotx = (;0;;( X # N, where n is any integer.
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TRIGONOMETRIC FUNCTIONS 57

We have shown that for all real x, sin°x + cosx =1
It followsthat
1+ tan’x = sec’x (why?)

1 + cot?x = cosec? X (why?)

In earlier classes, we have discussed the values of trigonometric ratios for 0°,
30°, 45°, 60° and 90°. The values of trigonometric functionsfor these anglesare same
asthat of trigonometric ratios studied in earlier classes. Thus, we have the following
table:

| B | Z @ S
6 4 3 | 2 & N\
: 1| L | B
n 0 2 \/E 7 1 0 -1 0
V3 | L 1
cos 1 ) A 5 0 -1 0 1
1 not not
tn | 0 | B [ 1| V3 |gdined| O | qefined| °
The values of cosec X, sec X and cot x Y
arethereciprocal of thevaluesof sinx, N
cos X and tan X, respectively.
ESpEcHivEY OD[B b ws
3.3.1 Sign of trigonometric functions \\
Let P (a, b) be apoint on the unit circle 1
with centre at the origin such that (1,0 C X rb \/(1, 0)
ZAOP = x- If ZAOQ = — x, then the X < o\ fA >X
coordinates of the point Q will be (a, —b) -
(Fig 3.7). Therefore B /
COS (— X) = cos X 0,-1) [D Q(a-b)
and sin(—x)=-sinx
v
Since for every point P (a, b) on Y’
the unit circle, =1 < a< 1 and Fig 3.7
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58 MATHEMATICS
—1< b<l1l wehave—1<cosx<land-1<sinx<1foralx We havelearntin

previous classes that in the first quadrant (0 < x< % ) aand b are both positive, inthe
second quadrant (% < X <m) a is negative and b is positive, in the third quadrant

3 3
(r<x< g) a and b are both negative and in the fourth quadrant (g <x<2m)ais

positive and b is negative. Therefore, sin x is positive for 0 < x < wt, and negative for

T T 3n
7 <Xx<2m. Similarly, cosxispositivefor 0 <x< o negativefor P < X< > andaso

3n
positive for > < X < 2rm. Likewise, we can find the signs of other trigonometric

functionsin different quadrants. In fact, we have the following table.

I I (1 v
sinx + + - -
COS X + % - +
tan x + - + -
COSEC X + + - -
SEC X + - - +
cot x + - + -

3.3.2 Domain and range of trigonometric functions Fromthe definition of sine
and cosine functions, we observe that they are defined for all real numbers. Further,
we observe that for each rea number x,

—1<snx<land —1<cosx<1

Thus, domain of y =sinxand y = cos x isthe set of all real numbers and range
istheinterval [-1, 1],i.e,—1<y<1
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TRIGONOMETRIC FUNCTIONS 59

1

sinx
x#nm,ne Z} andrangeistheset{y:ye R,y >1ory <-—1}. Similarly, thedomain

Since cosec x = , the domain of y = cosec x istheset { x: xe R and

ofy=secxistheset {x:xe Rand x=# (2n + 1) %,ne Z} and range is the set

{y:y e Rjy <—1lory=>1}. Thedoman of y = tan x isthe set {x : x e R and

X#(2n + 1) g n e Z} and range is the set of al real numbers. The domain of

y=cotxistheset {x:x € Randx#nmx, ne Z} and therangeisthe set of al real
numbers.

T
We further observe that in the first quadrant, as x increases from 0 to o sin X
increases from O to 1, as X increases from % to 1, sin x decreases from 1 to 0. In the
3n
third quadrant, asx increasesfrom«t to; , Sin x decreasesfrom 0 to—1and finally, in

3n
the fourth quadrant, sin x increases from —1 to 0 as X increases from - to 2m.

Similarly, we can discuss the behaviour of other trigonometric functions. In fact, we
havethefollowing table:

| quadrant Il quadrant 111 quadrant 1V quadrant
sin |increasesfrom0to1 | decreasesfrom1to 0 | decreasesfrom 0to—1 |increasesfrom—1to 0
cos |decreasesfrom 1to O | decreasesfrom Oto — 1 increases from—1to 0 |increasesfrom 0to 1
tan |increasesfrom 0 to oo | increases from—ooto O | increases from 0 to oo | increases from —ooto 0
cot | decreases from oo to O| decreasesfrom 0 to—oo [ decreasesfrom oo to 0 | decreases from Oto —o
sec  |increasesfrom 1 to oo | increases from —eoto—1| decreases from —1to—oo| decreases from oo to 1
coxC | decreases from oo to 1| increases from 1 to oo | increases from —eoto—1 | decreases from—1to—o

Remark In the above table, the statement tan x increases from 0 to o (infinity) for

T
O<x< —

2

simply means that tan x increases as x increases for 0 < x <

2018-19
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60 MATHEMATICS

assumes arbitraily large positive values as x approaches to g . Similarly, to say that

cosec x decreases from —1 to — e (minus infinity) in the fourth quadrant means that

3
cosec x decreases for X € (77T , 2m) and assumes arbitrarily large negative values as

X approachesto 2rt. The symbolse and —eo simply specify certain types of behaviour
of functions and variables.

We have already seen that values of sin x and cos X repeats after an interval of

2m. Hence, values of cosec x and sec x will also repeat after an interval of 2. We

Y
A

1
X” ' O : /-\ s
—4n —375\/27‘5 -n T 2 STC\_/
2
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] Y (] ]
2t/ ;
e NNy,
X
2,-17 2 )
el B ;
%
y=secx y = cosec x
Fig 3.12 Fig 3.13

shall seein the next section that tan (r + X) = tan x. Hence, values of tan x will repesat
after an interval of m. Since cot x isreciprocal of tan x, its values will aso repest after
aninterval of . Using thisknowledge and behaviour of trigonometic functions, we can
sketch the graph of these functions. The graph of these functions are given above:

Example6 If cosx= — §,x|iesinthethird quadrant, find the values of other five
5
trigonometric functions.

. . 3 5
Solution Sincecosx = _E , we have sec x = —5
Now SIX + cos?x =1, i.e, Sin’x=1—cos’x

9 16

or siPx=1-— = —

XTiRs T s
Hence sinx=x= ﬂ
5

Since x liesin third quadrant, sin x is negative. Therefore

] 4
sinx=-—
X~ 5

which also gives

COseC X = —

NG Né)
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Further, we have

sSnx 4 CoSX 3

tanx=——"=— and cotx=—"=—.
cosx 3 snx 4

5
Example 7 If cot x = — E’ x liesin second quadrant, find the values of other five

trigonometric functions.

12
Solution  Since cot x = —i,wehavetanx =——
12 5
No sec’x = 1+ tan? —1+%—@
W X= X=1T 5 T o5
13
Hence secx:ig

Since x liesin second quadrant, sec x will be negative. Therefore

e 13
X==—,
5
which also gives
5
COSX = ——
13
Further, we have
SiNX= tan X CoS X = B i -E
X=tanxcosx= (=) x(- 73) = 13
and COSeC L 13
e = —.
snx 12

. . 3ln
Example 8 Flndthevalueofsm?.

Solution We know that values of sin x repesats after an interval of 2rt. Therefore

ol

I N
sin 3 =sgin( 3)—S|n3—
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Example 9 Find the value of cos (—1710°).

Solution We know that values of cos x repeats after an interval of 2r or 360°.
Therefore, cos(—1710°) = cos (-1710° + 5 x 360°)
= cos (—1710° + 1800°) = cos 90° = 0.

|EXERCISE 3.2

Find the values of other five trigonometric functionsin Exercises1to 5.

1
1. cosxz—E, x liesin third quadrant.

3

2. sinng,xliesinsecondquadrant.
3

3. cotx:Z,xllesmthlrdquadrant.

13
4., secx= E x liesin fourth quadrant.

5
5. tan X:_E’ x liesin second quadrant.

Find the values of the trigonometric functionsin Exercises 6 to 10.

6. sn765° 7.  cosec (—1410°)
8. tan 19n 9 sin Hr
. 3 . (- 3 )

157
10. cot (- T)

3.4 Trigonometric Functionsof Sum and Differenceof TwoAngles

Inthis Section, we shall derive expressionsfor trigonometric functions of the sumand
difference of two numbers (angles) and related expressions. The basic resultsin this
connection are called trigonometric identities. We have seen that

1. sin(=x) =—sinx
2. €os (—X) = cos X
We shall now prove some more results:
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64 MATHEMATICS

3. cos(x+ty)=cosxcosy—sinxsny

Consider the unit circle with centre at the origin. LetX be the angle P,OP,and y be
the angle P,OP,. Then (x + ) is the angle P,OP,. Also let (—y) be the angle P,OP,.
Therefore, P, P,, P, and P, will have the coordinates P (cos X, sin Xx),
P, [cos (X +Y), sin(x +Y)], P,[cos (—Y), sin (-y)] and P, (1, 0) (Fig 3.14).

Y
A

P, (cos x, sin x)

— <

e
X'<€

P, [cos(x + y), sin(x + y)]

P, [cos(—y), sin(—y)] ~—"]

Fig 3.14

Consider thetriangles P,OP, and P,OP,. They are congruent (Why?). Therefore,
P,P, and P,P, are equal. By using distance formula, we get

P.P,2 =[cosx—cos(-Y)]? + [sin x—sin(-y]?
= (cos X —cosy)? + (sinx + siny)?
= CoS* X+ COP Yy —2COSXCOSY + Sin?X + siny + 2sin x siny
=2-2(cosxcosy—sinxsiny) (Why?)
Alo, P,P2? =[l-cos(x+y)]?+[0—sin(x+VY)?
=1-2cos(Xx+y)+cos’(Xx+y)+sin?(x+y)

=2-2cos(x+Yy)
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Since PP, =PP, wehavePP?=PP2
Therefore, 2 -2 (cosx cosy —sinxsiny) =2 —2 cos (X + Y).
Hence cos(x+Yy) =cosxcosy—sinxsiny

4. cosS(X—y)=cosxcosy+sinxsiny
Replacing y by —y in identity 3, we get
CoS (X + (—y)) =cosx cos (—y) —sinxsin (-Y)
or cos(X—Yy)=cosxcosy+sinxsiny

T .
5. cos (E_X) =sin X
If we replace x by g and y by xin Identity (4), we get

T T . T, .
cos(E—X) =cos§ COSX + sSin B sinx=sinx.

T
6. sn (E_X) = COS X

Using the Identity 5, we have

T e | B [E x| 2
sm(E ) = cos > 12 = COS X.
7. dn(xX+y)=snXxcosy+cosxsiny

We know that

sin (x +y) = cos [%—(X+ Y)J = cos [(%—X)—YJ

n . T :
= cos(E—X) cosy +sin (E—X)smy

=gnxcosy+cosxsiny
8. sin(x—y)=sSiNnXCOSYy—COSX Siny
If wereplacey by -y, in the Identity 7, we get the result.

9. By taking suitable values of x and y in the identities 3, 4, 7 and 8, we get the
followingresults:

T i i T
cos (E+X) = —snx sin (E+X) = COS X

CoS (T — X) = —Cos X sin (T —x) =sinXx
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COS (T + X) = — COS X sn (T +Xx) =—sinXx
cos (2® — x) = cosS X sin (2 — X) = —sin x

Similar resultsfor tan x, cot X, sec X and cosec X can be obtained from theresults of sin
X and cos X.

10. If none of the angles x, y and (x + y) is an odd multiple of z , then

2
tan x +tan y
tan (x +y) = l1-tan xtany
Since none of the x, y and (X + y) is an odd multiple of % it follows that cos X,

cosy and cos (x + y) are non-zero. Now

sin(x+y) _sinxcosy+cosxsiny
cos(X+Yy) cosxcosy—snxsiny’

tan(x+y) =

Dividing numerator and denominator by cos x cosy, we have

Sin xcosy 2 cosxsiny
COSXCOSY COSXCOSY

tan (x+y) = CosXxcosy sinxsiny
COSXCOSY COSXCOSY
tanx+tany
T 1-tanxtany
tan x —tan y
11. tan (x—y)=

l+tan xtan y
If wereplacey by —y in Identity 10, we get
tan (x—y) =tan [x + (- )]
tanx+tan(-y) tanx—tany
- 1-tanxtan(-y) N 1+tanxtany

12. If none of the angles x, y and (x +y) is a multiple of &, then

cot xcot y—1

COt(X+y):—coty+cotx
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Since, none of the x, y and (x + y) is multiple of x, we find that sin x sin y and
sin (x +y) are non-zero. Now,

COS(X+Yy) COSXCOsy-—sinxsiny

sin(X+Yy) SiNXCOSy+cosXxsiny

cot (x+vy)=

Dividing numerator and denominator by sinx siny, we have

cot xcoty—1
COLX+Y) = oty + cotx
cot x cot y+1 . . .
13. cot (x —y)= —— if none of angles x, y and x-y isamultiple of ©

cot y —cot x
If wereplacey by —y in identity 12, we get the result

_ _ 1—tan?x
14, cos2x =coX—sin2x=2cofXx—1=1-28n?’x=———5—
1+tan” x
We know that
COS (X +Yy) =COSX cosy—sinxsiny
Replacing y by x, we get
COS 2X = COS’X — Sin?X
=cogx— (1 —cos’x) =2 cosx — 1
Again, COS 2X = CO? X — SIN2X
=l-gmx—sinx=1-2sn?x.
cos? Xx—sin?x
cos” x+sin? x
Dividing numerator and denominator by cos? x, we get

We have COS2X =COF X —SiN?2x =

5 1—tan®x X¢nn+n h . int

CoS2X= ———, —, where nisan integer

1+tan?x 2 €9
2tan x

. B T . .
15. sin 2x = 2 SiNX €COS X = x¢nn+5,where nis an integer

1+tan? x
We have
sin(x+y)=sinxcosy+cosxsiny
Replacing y by x, we get sin 2x =2 sin X COS X.
2sin Xcosx

Agan SN 2X= "0 xsin? x
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Dividing each term by cos? x, we get

_ 2tanx
SN2X= 7 tan? x
_2dtanx n .
16. tan 2x = 1—tan? x if 2X¢nn+§,where nisan integer
We know that
tanx + tany
@ (X+Y) =1 tanxtany
. 2tan
Replacing y by x , we get tan2x=—;(
1-tan“ x

17. sin 3x =3sinX—4sinx
We have,
sin3x=sin (2x + X)
=sin 2X coS X + COS 2X Sin X
=2snxcosxcosx+ (1—2sin?x) sin X
=2s8inx(1-sin?x) + sinx—2 sin®x
=2sSNX—29nNXx+sinXx—2 sin*x
=3sinx—4snx
18. cos 3x=4 cos’X — 3 cos X
We have,
€0S 3X = C0S (2X +X)
= C0S2X COSX—Sn 2Xsin X
= (2cog’x — 1) cos X — 2sin X cOS X Sin X
= (2cog’x — 1) cos x — 2cos X (1 — cos*X)
= 2C0S*X — COS X — 2C0S X + 2 COS® X
= 4c0s* X — 3c0oS X.

tan3x 3tan x—tan® x 3 LA o
= X#NT+—
19. 1-3tan? x i e 2,w ere nisan integer

We have tan 3x =tan (2x + x)

tan 2x+tanx _ 1-tan” x

T l-tan2xtenx ,_2tenX.tanx
1-tan? x
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_ 2tan x+tan x—tan®x _ 3tan x —tan®x

1-tan®x—2tan®x  1—3tan’x
20. (i) cosx + cosy = 2c0S X+ycosX;y
(i) cosx —cosy=— 2sin X+ysin%
L . Xty X=y
(iii) sinx+siny= 2SN ——C0S———
2 2
_ _ _ X+y . X-y
(iv) sinx-siny= 2C0S——Sin——
2 2
We know that
COS(X+Yy) =Ccosxcosy—sinxsiny - (D
and COS(X—Yy) =cosxcosy+sinxsiny .. (2
Adding and subtracting (1) and (2), we get
COS (X +Yy) + Ccos(X—y) = 2COSXCosy .. (3)
and cos(Xx+y)—cos(x—y)=—2sinxsiny .. (4
Further sin(x+y)=sinxcosy+cosxsiny .. (5
and Sin(Xx—y) =sinXcosy—cosxsiny ... (6)
Adding and subtracting (5) and (6), we get
sin(x+y)+sin(x—y)=2sinxcosy .. (7)
sin(x+y)—sin(x—y) =2cosxsiny ... (8)

Letx+y=6and x—y = ¢. Therefore
(5Pl
2 2
Substituting the values of x and y in (3), (4), (7) and (8), we get

cos @ + cos ¢ = 2 cos [GLZ(DJCOS[G—;DJ

coS0 —cos ¢ =—2sn [9+¢jsm[9—¢j
2 2

snO+sn¢ =2sin [GL;)JCOS[G_T(W
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sin®—sin ¢ =2 cos [e;q)jsm[ezq)j

Since 6 and ¢ can take any real values, we can replace 6 by x and ¢ by y.
Thus, we get

X+y  X-y . X+Y . X=Y
COSX+ COSYy =2 C0S ——COS——; COSX—COSy =—2Sn —(—Sin——,
2 2 2 2
X+ X— X+y . X—
sinx+siny=23inTyCOSTy;sinx—siny=ZCosTySInTy.

Remark Asapart of identities givenin 20, we can prove the following results:
21. (i) 2cosx cosy=cos(x +Yy)+cos(x—yY)

(i) 2sinxsny=cos(x +y)—cos(x—Y)

(iii) 2snxcosy=sn (x+y)+sn (x-—yY)

(iv) 2cosxsiny=sn (x+y)—sn (X-Y).
Example 10 Prove that

3sin= %c——4 nﬂcot—zl
6 3 6 4

Solution We have
5n

T
= 3sin— %c——4 n—cot—
LHS= 6 3 6 4

—3x1><2 4s - x1=3-4sd T
= 5 —4sin 6 =3-4sn

1
=3-4x 5 =1=RH.S

Example 11 Find the value of sin 15°.

Solution  We have
sin15° =sin (45°—-30°)
=13sn45° cos 30° —cos 45° sin 30°
1 Jé 11 \3-1
"2 2 22 2z

13n
Example 12 Find the value of tan 12
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Solution We have

B+ T o etan 2T
tan o =tan | T =N g, 4 6

tan* —tan ™ 1—i
_ 4 "6 - \B3_3-1,
- R
I+tanTtan™ 14— +
4 V3

Example 13 Prove that
sin(x+y) tanx+tany
sin(x—y) tanx—-tany"

Solution We have

_sSn(x+y) sinxcosy+cosxsiny
sin(x—y) sinxcosy—cosxsiny

Dividing the numerator and denominator by cos x cosy, we get

L.H.S.

sin(x+y) tanx+tany
sin(x-y) tanx—tany-

Example 14 Show that
tan 3xtan 2 X tan X = tan 3x —tan 2 X —tan x

Solution We know that 3x = 2x + x
Therefore, tan 3x =tan (2x + X)

tan 2x+tan x
or tan3x=——

1-tan 2xtan x
or tan 3x —tan 3x tan 2x tan X = tan 2x + tan X
or tan 3X —tan 2x — tan X = tan 3x tan 2x tan X
or tan 3x tan 2x tan X = tan 3x — tan 2x —tan x.

Example 15 Prove that
cos[%+ xj+ cos[%— xj:ﬁ COSX

Solution Using the Identity 20(i), we have
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L.H = COS E+x + COS E—x
S 4 4
—+X+——-X E+x—(——x)
=2C0s cos| 4

T 1
—Zcosz COSX = 2 X 2 cosx= f2cosx=RH.S.

COS7X+ COSOX

T —— COtX
Sin 7X—9n 5x

Example 16 Prove that

Solution Using the Identities 20 (i) and 20 (iv), we get

7X+ 5x 7X—5x
cos

LHS Wil ¢ 2__ X _ tx=RH.S
ZCOS7X;5XSin7X;5X snx

Sn5x—2sin3x+sinx
COS5X—CosXx

Example 17 Prove that = tanx

Solution We have

LHS _§n5x-2sin3x+sinx _ SN5Xx+sinX—2sin3x
"7 cos5x—cosx COS5X—COSX

_2sin3xcos2x—2sin3x _  sin3x (cos2x-1)

—2s3n3xsin 2x SnN3xsin2x

_1-cos2x_ 2sin’x
Sin2x  2sin XCos X

= tanx = RH.S
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Prove that:

3.

5.

| EXERCISE 3.3|
.o T T 2_:_2 2T ECOSZE:§
1. sin 6+cosZ3 tan 2 > 2. 25|n6+cosec2 6 35
cot —+00$05—+3tan27t 6 4. 2sin2%+20032£+2$c22=10
6 6 6 4 4 3
Find the value of:
(i) Sin75° (ii) tan 15°

Provethefollowing:

6. COS| % lcos E—y —sin| Z-x |sin E—y =sin(x+Yy)
4 4 4 4

10.

11.

12.
14.
15.

16.

18.

20.

T

tan | —+X 2
4 j_(lﬂanx}

tan n_Xj 1-tan x
4

cos

cos (m+ x) cos(—X) — cot’

. sin (mT—Xx) cos(2+x)

3?7[+ x]cos (2n+X) [cot (%—x)+ cot (2n+ x)} =

sin (n+ 1)xsin (n + 2)x + cos (n + 1)x cos (n + 2)X = cos X

COos %+X —COSs 3——X \fsmx
4 4

Sin? 6X — sin4x = sin 2x sin 10x

SiN2 X + 2sin 4x + sin 6X = 4 cos® X Sin 4x

cot 4x (sin 5x + sin 3x)

COsS9X — cosbx sin2x
sinl7x— sin3x cos10x
snx—siny X—y
—_— an
COSX + COSY 2
sinx—sin3x )

= 2sinX

sin? x— cos® x

17.

19.

21.
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sinbx + sin3x

13. cos? 2x — cos” 6X = Sin 4x sin 8x

=cot X (sin 5x — sin 3x)

=tan4x
CO0S5X + cos3x

sin X+ sin3x
— = tan2x
COS X + COS3X

COS4X + COS3X + COS2X
= cot 3x

sindx+ sSn3x+ sin2x
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22. cotxcot2x—cot 2x cot 3x —cot 3xcot x =1

_ 4tan x (1-tan®x)

- . 24. cos4dx =1 - 8sin® X cos X
1-6tan“x+tan"x

23. tan4x

25. cos6x =32 cos® x—48cos* x + 18 cos? x — 1

3.5 Trigonometric Equations

Equations involving trigonometric functions of a variable are called trigonometric
equations. In this Section, we shall find the solutions of such equations. We have
already learnt that the values of sinx and cosx repeat after an interval of 2 and the
values of tanx repeat after an interval of ©. The solutions of atrigonometric equation
forwhichO< x< 2w arecalled principal solutions. The expression involving integer
‘n” which givesall solutions of atrigonometric equation iscalled the general solution.
We shall use ‘Z’ to denote the set of integers.

Thefollowing exampleswill be hel pful in solving trigonometric equations:

3
Example 18 Find the principal solutions of the equation sinx = g
_ 1 3 27y oL .1 /3
—e = sn—=¢8n|n—— |=Sin—=—
Solution Weknowthat,sm3 > and 3 [ﬂ 3) 3 5
2n

Therefore, principal solutionsare X=% and 3

1
Example 19 Find the principal solutions of the equation tanx = — ﬁ .

. 1
Solution We know that,tanE = i.Thus, tan n—E =—tan£=——
6 3 6 6 3
T T 1
tan| 2n—= |=—tan—=——"
and [TE 6] 5 NG
51 11n 1
Thus tan—=tan—=——.
6 6 J3
_— . St 11n
Therefore, principal solutions are o and 5

Wewill now find the general solutionsof trigonometric equations. We have aready
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seen that:
sinx =0 gives x= nx, wherene Z

cosx =0 gives x=(2n + 1)% ,Wherene Z.
We shall now provethefollowing results:
Theorem 1 For any real numbers x and y,
snx=snyimpliesx=nn + (-1)"y, wherene Z
Proof  If sSinx=siny,then

X+ X —
y sin—y =0
2

sinx—siny=0 or 2cos

X+ X —
y =0 or sin 2y =0

which gives cos

X+Yy n X—y

Therefore N =@2n+ 1)5 or > =nm, wherene Z

i.e X=2n+1)n—-y orx=2nm+Yy, whereneZ

Hence X=(2n+ r + (-1)*"**y or x = 2nw +(-1)*"y, wheren € Z.

Combining these two results, we get
Xx=nm+ (-1)"y, wherene Z.

Theorem 2 For any real numbers x and y, cos X = cos y, implies x= 2nw + vy,
wherene Z

Proof If cosx = cosy, then
X+y X—y

cosx—cosy=0 i.e, —-28n sin =0
y 2 2
X+ X —
Thus sin y =0 or sin y =0
2 2
X+y X —
Therefore =nm or =nn, wherene Z
i.e X=2nt -y orx=2nn +y, wherene Z
Hence x=2ntty wherene Z

Theorem 3 Provethat if x and y are not odd mulitple of % , then

tan x=tany impliesx =nn +y, wherene Z
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Proof If tanx=tany, then tanx—tany=0
sinxcosy—cosxsiny_0

or

COSX COSY
which gives sn(x-y)=0 (Why?)
Therefore X—y=nmie,x=nt+y wherene Z
. . . 3
Example 20 Find the solution of sinx =—7.
. 3 . T . T . 4n
Solution Wehavesinx =—— = —SN_-=38n| t+—_ |=sN—
2 3 3 3
) . 4n ) )
Hence sinx= Sln?,whlch gives

4
X= nn+(—1)”?n, wherene Z.

4 .
?n is one such value of x for which smx=—§. One may take any

3
other value of x for which sinx = — % . The solutions obtained will be the same

although these may apparently look different.

Solution We have, COSX =
T
Therefore X= 2n7ti§ ,Wherene Z.

Example 22 Solve tan 2x = —cot[x+%).

Solution We have, tan ZXZ_COt[X+Ej = tan[%+ x+%j
3
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or tan2x = tan[x+%j
5n
Therefore 2X=nn+ X+€, where ne Z
5n
or X=nn+€,wherenez.

Example 23 Solvesin 2x—sin 4x + sin 6x = 0.

Solution The equation can be written as
sin6x+sin2x—sin4x =0

or 2sin4dxcos2x—sindx =0
i.e sindx(2cos2x-1) =0
. 1
Therefore sn4x=0 or COSZX:E
. . T
i.e sindx=0 or cost:cosg
Hence 4X=nm Oor 2X= ZHRi% , where neZ
. nm T
i.e ij or X =nni6,wherenez.

Example 24 Solve2 cos?x+3sinx=0
Solution  The eguation can be written as

2(1-sin?x)+3sinx =0

or 2sin® x—3sinx—2=0
or (2sinx+1) (sinx—2) =0
. 1 .
Hence smx:—E or snx=2
But sinx = 2isnot possible (Why?)
Therefore sinx= . SiﬂE
X = 5> = 6
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Hence, the solutionisgiven by

7
x=nn+(—1)n€n,wherene Z.

| EXERCISE 34
Find the principal and general solutions of thefollowing equations:
1. tanx = \/§ 2. seCcx=2
3. cotx=-4/3 4, cosecx=-2
Find the general solution for each of the following equations:
5. cos4 x=cos2x 6. cos3x+ cosx—cos2x =0
7. sin2x+cosx=0 8. sec® 2x = 1-tan 2x

9. gnx+sn3x+sin5x=0

Miscellaneous Examples

3 12
Example 25 Ifsinx:g, cosy=—E,wherexandybothIieinsecondquadrant,
find the value of sin (x +y).
Solution We know that
sin(X+y)=sinxcosy + cosxsiny - (D

i 9 16

Now cos? Xx=1—-smx=1-—=—
25 25

4
Therefore cosx = J_rg.

Since x liesin second quadrant, cos x is negative.

Hence cosx:—ﬂ
5
Now sinzyzl—coszyzl—&:é
169 169
i.e siny:+i
e 3

5
Sincey liesin second quadrant, hencesinyispositive. Therefore, siny = 13 Substituting

thevalues of sinx, siny, cosx and cosy in (1), we get
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. 3(12)( 4\ 5 36 20 56
sin(x+y) =—-x ——J+ ——Jx— = ————=——
5 5) 13 65 65 65
Example 26 Prove that
COSZXCOS%—COSSXCOSQ—ZX=SMSXSM%_

Solution  We have

L.H.S. = % [Zcos 2X cosg— 20039—2X cosBx}

:1 CoS 2x+Z + C0S 2x—Z —C0S %+3x —C0S %—3x
2 2 2 2 2

1 5x 3x 15x x| 1] sx 15x |
= —|_COS— + COS— —COS— —C0S— | = —|_COS— = COS—J
2 2 2 2 2172 2 2

5x 15X 5x 15x) |
1 PRy 5 5
—| =2sin 2 2 sin 2 2
=2 2 2

. ~( 5x| . 5x
= —sinbx 9n —?Jz sSn5x sm? =RHS.

Example 27 Find the value of tan %

Solution Let X=2 Then 2x="1
g 1

2tan x

Now tan2x = >
1-tan® X

. 2tanE

or tan—=—8
4 _tan?®

Let y=tan—.Thenl=

y=lg: 1y
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or yY+2y—-1=0
—21242
Therefore y= T\/_ =—1+42
_ T . T .
Since 3 liesin the first quadrant, y = tan 3 ispositve. Hence

tang = \/5—1_

3 3t . X X X
Example 28 If tan X=Z,n<X<?,f|nd the value of smE, cosE and tanE.

. . 3n . .
Solution Since T < X<7, COSX is negative.

3

AI £<§<_
= 2254

X X
Therefore, sin 5 is positive and cos 5 IS negative.

9 25
Now sec?x=1+tan’x= 1+—=—
16 16
16 4
Therefore cos’X=_— orcosx=—— (Why?)
25 5
., X 4 9
Now 29N —==1- cosx =1+—=—.
24 5 5
Therefore sin25 = i
2 10
X 3 Why?
or sin— = —— .
| x L4 1
Agan 2cos? 5 = 1+ cosx = 5 &5
X 1
Therefore cos? — = —
2 10
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X 1
or cos — = ——— (Why?
> an( y?)
sinX
X P 3 -J10
Hence tanzz i—\/_x[ 1 J-—B
cosE 10

Example 29  Prove that cos?x + cosz[x+gj+ cosz[x—%j:g-

Solution  We have

1+ cos[2x+2;} 1+ cos[Zx—z:Z:}

L.H.S.

1+ cos 2X
+ +
2 2 2

3+ Ccos2x+ cos[2x+2—;[)+ cos[Zx—z—;ﬂ

N =

= 3+ CoS 2X+ 2c0S 2X cosz—:ﬂ

3+ C0oS 2X + 2¢c0S 2X cos(n—%ﬂ

N

I
N

3+ C0S 2X— 2¢0S 2X cos%}

b
= E[3+c032x—0032x] =g =RH.S.
Miscellaneous Exercise on Chapter 3
Prove that:

T On 3n 5n
1. 2C0S— COS— + Cc0S— + cos—=0
13 13 13 13

2. (Sn3x+sinx)sinx+ (cos3x—cosx) cosx=0

2018-19



82 MATHEMATICS

. . Xty
3. (cosx+ cosy)?+ (sinx—siny)? = 4 cos’ N
X-y
2
5. sinx+sin3x+ sin 5x + sin 7X = 4 coS X COS 2X Sin 4x

4. (cosx—cosy)? + (sinx—siny)?=4sin?

(sin 7x + sin 5x) + (sin 9x + sin 3x)
(cos 7x + cos 5x) + (cos 9x + cos 3x)

= tan 6x

. . . . X 3X
7. dn3x+sn 2x—smx=4smxcos§ cos;

X X X
Find sin E cosE andtanz in each of thefollowing :

4 1
8. tanx —g,xinquadrantll 9. cosx:—g,xinquadrantlll

1
I,xinquadrantll

10. sinx

Summary

¢ Ifinacircleof radiusr, anarc of length | subtends an angle of 6 radians, then
l=r6

T
¢ Radian measure = @X Degree measure

180
¢ Degree measure = TX Radian measure

& cog X +sin’x=1

& 1+ tan?x = sec?X

@ 1 + cot?x = cosec? x
4 cos (2nmt + X) = cos X
¢ sin(2nmt + xX) =sin x
¢ sin(—x)=—sinx

@ COS (— X) = cos x
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®Ccos(x+y)=cosxcosy—sinxsiny
®CosS(X—Yy)=cosxcosy+ sinxsiny

QCOS(%—X) = sinx

¢ sin (%—X) = COS X

#sSin(x+y)=sinxcosy+cosxsiny
¢ sSin(Xx—y)=sinxcosy—cosxsiny

Qcos[%“(j:—sinx sin [g“(j:cosx
cos (T —X) = — COS X sn(nt —Xx) =sinXx
cos(m +X) =—CoSX sn(m +X)=—sinx
CoS (2 —X) = COS X sin 2r —x) =—sinx

# If none of theanglesx, y and (x + y) isan odd multiple of z , then

2
tanx+tany
ten (x+y) = 1-tanxtany
tanx—tany
CEDEY) = 1+ tanxtany

# If none of theangles x, y and (x + y) isamultiple of &, then

cot xcot y—1

Cot Y)Y cot y + cot x

cotxcoty+1
@ cot (x—y) = coty —cot x

1—tan®x

= —gn2x = 1= _ TaA =
@ COS 2X = CO X —SiNPX = 2c082X —1=1—-2 SN x 1+ tan?x
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. . 2tan x
4 SN2x=28NX COSX =————
1+ tan“x
B 2tanx
@ e X =

@ sin 3x = 3sinX —4sin®X

@ C0S 3X = 4c0os*X — 3cosX

ST

¢ tan 3= T 3tan?x
: X+y  X-y
¢ () cosx+cosy=2c0s — = COS—=
X+Y . X=y

. 3 = _ogn XY g Rk
(i) cosx—cosy sin 5 5

X+Yy X—y

i Snx+Snv=2s -
(i) sinx+sny sm—2 D

X+y . X—
(iv) sinx—siny:ZCosTySlnTy

¢ () 2cosxcosy=cos(x+y)+cos(xX—yY)
(i) —2sinxsiny=cos(X+y) —cos(X—Y)
(i) 2sinxcosy=sn(x+y)+sn(x-y)
(iv) 2cosxsny=sin(x+y)—sn(xX-y).
¢ sinx =0givesx =nm, wherene Z.

#cosx=0givesx=(2n+1) %,wherene Z.

¢ snx=sinyimpliesx=nn + (-1)"y, wherene Z.
@ cos X =cosy, impliesx=2nn +y, wherene Z.

¢tanx =tanyimpliesx=nn +y, wherene Z.
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Historical Note

The study of trigonometry was first started in India. The ancient Indian
Mathematicians, Aryabhatta (476), Brahmagupta (598), Bhaskara | (600) and
Bhaskara I (1114) got important results. All this knowledge first went from
Indiato middlie-east and from there to Europe. The Greeks had also started the
study of trigonometry but their approach was so clumsy that when the Indian
approach became known, it was immediately adopted throughout the world.

In India, the predecessor of the modern trigonometric functions, known as
thesine of an angle, and the introduction of the sinefunction representsthemain
contribution of the siddhantas (Sanskrit astronomical works) to the history of
mathematics.

Bhaskara | (about 600) gave formulae to find the values of sine functions
for angles more than 90°. A sixteenth century Malayalam work Yuktibhasa
(period) contains a proof for the expansion of sin (A + B). Exact expression for
sines or cosines of 18°, 36°, 54°, 72° etc., are given by
Bhaskara I1.

The symbols sin x, cos™ x, etc., for arc sin X, arc cos x, etc., were
suggested by the astronomer Sir John EW. Hersehel (1813) The namesof Thales
(about 600 B.C.) isinvariably associated with height and distance problems. He
is credited with the determination of the height of a great pyramid in Egypt by
measuring shadows of the pyramid and an auxiliary staff (or gnomon) of known
height, and comparing theratios:

H_§ tan (sun’s altitude
—_£2 i
5= ( ude)

Thalesis also said to have calculated the distance of a ship at seathrough
the proportionality of sidesof similar triangles. Problems on height and distance
using the similarity property are aso found in ancient Indian works.

4

® —

o,
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