Class: XII Session: 2020-2021

Subject: Physics

Model Question Paper (Theory)
Maximum Marks: 70 Marks
Time Allowed: $\mathbf{3}$ hours

General Instructions:

1. All questions are compulsory. There are 33 questions in all.
2. This question paper has five sections: Section A, Section B, Section C, Section D and Section E.
3. Section A contains ten very short answer questions and four assertion reasoning MCQs of 1 mark each, Section B has two case based questions of 4 marks each, Section C contains nine short answer questions of 2 marks each, Section D contains five short answer questions of 3 marks each and Section E contains three long answer questions of 5 marks each.
4. There is no overall choice. However internal choice is provided. You have to attempt only one of the choices in such questions.

S.NO		MARKS
	Section - A All questions are compulsory. In case of internal choices, attempt any one of them.	
1.	What is the angle of dip at the magnetic equator?	
2.	If \vec{E} and \vec{B} represent electric and Magnetic Field vectors of an EM Wave, then what is the direction of propagation of an EM wave? OR The energy of the EM waves is of the order of 15 keV . To which part of the spectrum does it belong?	1
3.	A charged particle enters into a uniform magnetic field and experiences an upward force as indicated in the figure. What is the nature of charge on the particle?	1
4.	If a conductor 0.2 m long moves with a velocity of $0.3 \mathrm{~m} / \mathrm{s}$ in a magnetic field of 5T, calculate the emf induced. OR	

	The instantaneous current in an circuit is $\mathrm{i}=2.0 \sin 314 \mathrm{t}$, what is rms value of the current.	
5.	The diagram shows the energy levels for an electron in a certain atom. Which transition shown represents the emission of a photon with the most energy	1
6.	The work function of a substance is 4.0 eV . What is the longest wavelength of light that can cause photo-electrons emission from this substance (approximately)?	1
7.	The binding energy of deuteron is 2.23 MeV . What is its massdefect? OR Which series of hydrogen spectra exists in visible region?	1
8.	The graph of potential barrier versus width of depletion region for an unbiased pn junction is shown below in A. In comparison to A, graphs B and C are obtained after biasing the pn junction in different modes. Identify the type of biasing in B and C . OR In a p- type semiconducting material, the Fermi level is 0.3 eV above the valence band. The concentration of accepter atoms is increased. The new position of Fermi level is likely to be shifted towards which band?	1
9.	When the voltage drop across a p-n junction diode is increased from 0.65 V to 0.70 V , the change in the diode current is 5 mA . What is the dynamic resistance of the diode?	1

10.	Name one special purpose pn junction diode operated under reverse biased conditions.	1
	For question numbers 11, 12, 13 and 14, two statements are given-one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below. a) Both A and R are true and R is the correct explanation of A b) Both A and R are true but R is NOT the correct explanation of A c) A is true but R is false d) A is false and R is also false	
11.	Assertion: The electrostatic force between the plates of a charged isolated capacitor decreases when dielectric fills whole space between plates. Reason: The electric field between the plates of a charged isolated capacitance increases when dielectric fills whole space between plates.	1
12.	Assertion: two equipotential surfaces cannot cut each other. Reason: equipotential surfaces are parallel to each other.	1
13.	Assertion : The refractive index of diamond is $\sqrt{6}$ and that of liquid is $\sqrt{ } 3$. If the light travels from diamond to the liquid, it will totally reflected when the angle of incidence is 30°. Reason : $\mu=\operatorname{sinC}$, where μ is the refractive index of diamond with respect to liquid.	1
14.	Assertion: A double convex lens ($\mathrm{m}=1.5$) has focal length 10 cm . When the lens is immersed in water $(\mathrm{m}=4 / 3)$ its focal length becomes 40 cm . Reason: $\frac{1}{f}=\frac{\mu_{l}-\mu_{m}}{\mu_{m}}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$	1
	Section - B Questions 15 and 16 are Case Study based questions and are compulsory. Attempt any 4 sub parts from each question. Each question carries 1 mark.	
15.	Transformer A transformer is a passive electrical device that transfers electrical energy from one electrical circuit to another, or multiple circuits. A varying current in any one coil of the transformer produces a varying magnetic flux in the transformer's core, which induces a varying electromotive force across any other coils wound around the same core. Electrical energy can be transferred between separate coils without a metallic (conductive) connection between the two circuits. Transformers are most commonly used for increasing low AC voltages at high current or decreasing high AC voltages at	4

| | low current in electric power applications, and for coupling the
 stages of signal-processing circuits. Transformers can also be used
 for isolation, where the voltage in equals the voltage out, with
 separate coils not electrically bonded to one another.
 1. The core of any transformer is laminated so as to
 (a) reduce the energy loss due to eddy currents.
 (b) Make it light weight.
 (c) Make it robust and strong.
 (d) Increase the secondary voltage. |
| :--- | :--- | :--- |
| 2. A transformer is used to light a 100 W and 110 V lamps from
 a 220 V mains. If the main current is 0.5 A, the efficiency of
 the transformer is approximately
 (a) 30%
 (b) 50%
 (c) 90%
 (d) 10% | |
| 3. A transformer works on the principle of | |
| (a) converter. | |
| (b) Inverter. | |
| (c) Mutual inductance. | |
| (d) Self-inductance. | |
| 4. For an ideal-step-down transformer, the quantity which is | |
| constant for both the coils is | |
| (a) current in the coils | |
| (b) voltage across the coils | |
| (c) resistance of coils | |
| (d) power in the coils | |
| 5. Electrical energy is transmitted over large distances at high | |
| alternating voltages. Which of the following statements is not | |
| correct? | |
| (a) For a given power level, there is a lower current. | |
| (b) Lower current implies less power loss. | |
| (c) Transmission lines can be made thinner. | |
| (d) It is easy to reduce the voltage at the receiving end using | |
| step-down transformers. | |
| 1. Mirage is a phenomenon due to | |
| (a) refraction of light | |
| (b) reflection of light | |

	(c) total internal reflection of light (d) diffraction of light. 2. Critical angle of glass is θ_{2} and that of water is θ_{2}. The critical angle for water and glass surface would be ($\mu_{\mathrm{g}}=3 / 2$, $\mu_{\mathrm{w}}=4 / 3$). (a) less than θ_{2} (b) between θ_{1} and θ_{2} (c) greater than θ_{2} (d) less than θ_{1} 3. If the critical angle for total internal reflection from a medium to vacuum is 30°, the velocity of light in the medium is (a) $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (b) $1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (c) $0.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (d) $0.2 \times 10^{8} \mathrm{~m} / \mathrm{s}$ 4. Critical angle is a) The angle of refraction in the denser medium corresponding to which the angle of incidence in the rarer medium is 90°. b) The angle of incidence in the denser medium corresponding to which the angle of refraction in the rarer medium is 0°. c) The angle of incidence in the denser medium corresponding to which the angle of refraction in the rarer medium is 90°. d) The angle of incidence in the rarer medium corresponding to which the angle of refraction in the denser medium is 90° 5. Optical fibre communication uses the principle A. light scattering B. light path reversibility C. Total internal reflection D. least action	
	Section - C All questions are compulsory. In case of internal choices, attempt	
17.	A galvanometer is first converted into a voltmeter of range $0-3 \mathrm{~V}$ and then into a voltmeter of range $0-6 \mathrm{~V}$. In which case the resistance would be higher one? Why?	2
18.	If one of the slits in the Young's double slit experiment is painted, so as to allow only half the light intensity to pass than the other, then what will be the effect on the intensity of the maxima and minima in the interference pattern? OR	2

	The fringe width in Young's double slit interference pattern is 2.4 x $10^{-4} \mathrm{~m}$ when red light of wavelength $6400 \AA$ is used. By how much will it change if blue light of wavelength $4000 \AA$ is used?	
19.	An electric dipole is held in a uniform electric field. (i) Show that the net force acting on it is zero. (ii) The dipole is aligned parallel to the field. Find the work done in rotating it through the angle of 180°. OR What is an equi-potential surface? Show that the electric field is always directed perpendicular to an equi-potential surface.	2
20.	Draw a circuit diagram to explain the working of a photodiode. Also draw the V-I characteristics of this semiconductor diode.	2
21.	A rectangular conductor LMNO is placed in a uniform magnetic field of 0.5 T . The field is directed perpendicular to the plane of the conductor. When the arm MN of length of 20 cm is moved towards left with a velocity of $10 \mathrm{~ms}^{-1}$, calculate the emf induced in the arm. Given the resistance of the arm to be 5Ω (assuming that other arms are of negligible resistance) find the value of the current in the arm.	2
22.	In the figure given below $\mathrm{SS}_{1}-\mathrm{SS}_{2}=\lambda / 4$. Find the position of central maxima from ' O ' if P is midpoint of $\mathrm{S}_{1} \& \mathrm{~S}_{2}$	2
23.	Give three differences between p-type and n-type semiconductor. How these are made from intrinsic semiconductors?	2
24.	A bar magnet is held stationery in Magnetic meridian. Another similar magnet is kept parallel to it such that their midpoints lie on their perpendicular bisector. If the second magnet is free to move, what type of Motion will it have? Translatory, rotatory or both? Justify your answer.	2

	OR Where on the earth's surface is the value of angle of dip (i) maximum (ii) minimum?	
25.	A thin converging lens has a focal length ' f ' in air. If it is completely immersed in a liquid, briefly explain how the focal length of the lens will vary?	2
	Section -D All questions are compulsory. In case of internal choices, attempt any one.	
26.	A long straight wire of a circular cross-section of radius ' a ' carries a steady current ' I '. The current is uniformly distributed across the cross-section. Apply Ampere's circuital law to calculate the magnetic field at a point ' r ' in the region for (i) $r<a$ and (ii) $r>a$.	3
27.	1. In the potentiometer circuit shown, the balance point is at X. State with reason, where the balance point will be shifted when (i) R is increased, (ii) S is increased, keeping R constant. (iii) Cell P is replaced by another cell whose emf is lower than that of cell Q. State Kirchhoff's rules. Use these rules to write the expressions for the currents $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3} in the circuit diagram shown.	3
28.	(I) State two important features of Einstein's Photoelectric equation. (II) Radiation of frequency $10^{15} \mathrm{~Hz}$ is incident on two photosensitive surface P and Q . there is no photoemission from surface P .	3

	photoemission occurs from surface Q but photoelectrons have zero kinetic energy. Explain this observation and find the value of work function for surface Q . OR A beam of monochromatic radiation is incident on a photosensitive surface answer the following questions giving reasons : (i) do the emitted photoelectrons have the same kinetic energy? (ii) does the kinetic energy of the emitted electrons depend on the intensity of incident radiation? (iii) on what factors does the number of emitted photoelectrons depend?	
29.	The value of ground state energy of hydrogen atom is -13.6 eV : What does the negative sign signify? How much energy is required to take an electron in this atom from the ground state to the first excited state?	3
30.	Obtain the binding energy of a nitrogen nucleus from the following data $\mathrm{m}_{\mathrm{H}}=1.007834 ; \mathrm{m}_{\mathrm{n}}=1.00867 ; \mathrm{m}_{\mathrm{N}}=14.03074$. Give your answer in MeV .	3
	Section-E All questions are compulsory. In case of internal choices, attempt any one.	
31.	(a) Two thin infinite sheets 1 and 2 having surface charge densities $+\sigma$ and -2σ respectively are as shown in the diagram. Find the electric field at points A and B. (b) A capacitor of capacity C is charged fully by connecting it to a battery of emf E . It is then disconnected from the battery. If the separation between the plates of the capacitor is doubled then how the following parameters will change:- i) Charged stored in the capacitor ii) Field strength between the plates iii) Energy stored by the capacitor OR (a) Define electric dipole. Derive an expression for the electric potential on the axial line due to an electric dipole. (b) An electric dipole of length 4 cm , when placed with its axis	5

	making an angle of 60° with a uniform electric field, experiences a torque of $4 \sqrt{ } 3 \mathrm{Nm}$. Calculate the potential energy of the dipole, if it has a charge of $\pm 8 n C$.	
32.	A series LCR circuit is connected to an ac source. Using the phasor diagram, derive the expression for the impedance of the circuit. Plot a graph to show the variation of current with frequency of the source, explaining the nature of its variation and hence calculate impedance at resonance.	5
(a) Define the coefficient of self-inductance. Find the coefficient of self-inductance of a long co axial solenoid. (b) A metallic rod of length l is rotated at a constant angular speed a, normal to a uniform magnetic field B. Derive an expression for the current induced in the rod, if the resistance of the rod is R.	(a) Derive lens maker's formula for a given biconvex lens. (b) Double convex lenses are to be manufactured from a glass of refractive index 1.55 with both faces of the same radius of curvature. What is the radius of curvature required if focal length is to be 20 cm?	5
(a) Draw the ray diagram of image formation by a telescope when		
final image is formed at infinity. Write the formula for its magnifying power. (b) A small telescope has an objective lens of focal length 144 cm and an eyepiece of focal length of 6 cm. Calculate its magnifying power and separation between both lenses.		

Class -XII
 PHYSICS (Theory)
 SQP Marking Scheme 2020-21

S.NO	VALUE POINTS	MARK
.		\mathbf{S}
1.	0°	$\mathbf{1}$
2.	$\vec{E} \times \vec{B}$	$\mathbf{1}$
	OR	OR
	X-rays	1
3.	positive	1
4.	O.3 V	1
	OR	OR

	1.414 A	1
5.	III	1
6.	310 nm	1
7.	$0.0024 \mathrm{u}$ OR Balmer	$\begin{gathered} \hline \mathbf{1} \\ \text { OR } \\ \mathbf{1} \end{gathered}$
8.	B is reversed biased and \mathbf{C} is forward biased OR Valence band	$0.5+0.5$ OR 1
9.	10 ohm	1
10.	photodiode	1
11.	(d)	1
12.	(c)	1
13.	(d)	1
14.	(a)	1
15.	1. (a) 2. (c) 3. (c) 4. (d) 5. (c) (any four)	$\begin{gathered} 1+1+1+ \\ 1 \end{gathered}$
16.	1. (c) 2. (c) 3. (b) 4. (c) 5. (c) (any four)	$\begin{gathered} 1+1+1+ \\ 1 \end{gathered}$
17.	Use $\mathrm{R}=\mathrm{V} / \mathrm{I}_{\mathrm{g}}-\mathrm{G} \quad, \quad \mathrm{R} \alpha \mathrm{V}$, show calculation also	2
18.	$\begin{aligned} & \mathrm{I}_{\max }=(\sqrt{2}+1) \mathrm{a} \\ & \mathrm{I}_{\min }=(\sqrt{2}-1) \mathrm{a} \\ & \beta 1 / \beta 2=\lambda 1 / \lambda 2 \\ & \beta 2=.15 \mathrm{~mm} \\ & \Delta \beta=0.09 \mathrm{~mm} \end{aligned}$	1+1
19.	i) force acting on dipole are equal and opposite therefore net force will be zero ii) $\begin{aligned} \mathrm{W} & =-\mathrm{pE}\left(\cos \Theta_{2}-\cos \Theta_{1}\right) \\ & =2 \mathrm{pE} \end{aligned}$ OR The surface which has same potential throughout is called an equipotential surface.	1+1

	$\begin{aligned} & \text { Since } d w=\vec{F} \cdot d \vec{x} \\ & d w=(-q \circ E) \cdot d \vec{x} \\ & \text { (force on the test chage } \mathrm{q} \circ \overrightarrow{\mathrm{~F}}=\mathrm{q} \circ \vec{E} \text {) } \end{aligned}$ Since work done is moving a test charge along an equipotential surface is always zero. $\begin{aligned} & \Rightarrow-\mathrm{q} \circ \vec{E} \cdot \overrightarrow{d x}=0 \\ & \vec{E} \cdot \overrightarrow{d x}=0 \\ & \Rightarrow E \perp \vec{d} x \end{aligned}$	
20.		1+1
21.	Let ON be x at some instant. The emf induced in the loop $=e$. $e=-\frac{d \phi}{d t}=-\frac{d(B l x)}{d t}=B l\left(-\frac{d x}{d t}\right)=B l v=0.5 \times 0.2 \times 10=1 \mathrm{~V}$ \therefore Current in the arm, $I=\frac{e}{R}=\frac{1}{5}=0.2 \mathrm{~A}$	2
22.	For central maxima at a point 'B' on screen $\mathrm{SS}_{1}+\mathrm{S}_{1} \mathrm{~B}=\mathrm{SS}_{2}+\mathrm{S}_{2} \mathrm{~B}$ If $\mathrm{OB}=\mathrm{y}$ $\mathrm{SS}_{1}-\mathrm{SS}_{2}=\mathrm{S}_{2} \mathrm{~B}-\mathrm{S}_{1} \mathrm{~B}=\mathrm{dy} / \mathrm{D}$ $\begin{aligned} & \lambda / 4=\mathrm{dy} / \mathrm{D} \\ & \mathrm{y}=\mathrm{D} \lambda / 4 \mathrm{~d}=\mathrm{OB} \end{aligned}$	2
23.	Any three points N-type semi conductor Sl No P-type Semi conductor P-type semiconductor is formed due N-type semi conductor is formed 1 Pren	1.5+0.5

	$\left.\left.\begin{array}{ll}\text { to the doping of III group elements } \\ \text { i.e. Boron, Aluminum, Thallium. }\end{array} \quad \begin{array}{l}\text { due to doping of Nitrogen, } \\ \text { Phosphorus, Arsenic, Antimony, and } \\ \text { Bismuth. }\end{array}\right] \begin{array}{l}\text { These are also known as Trivalent } \\ \text { semi conductors. }\end{array} \quad \begin{array}{l}\text { These are also known pentavalent } \\ \text { semiconductor. }\end{array}\right]$	
24.	Translatory, as two equal forces act on two ends, in same direction. OR Angle of dip is maximum at poles of earth i e. 90° and minimum at the equator of the earth. i.e. 0°	1+1
25.	The focal length of the lens in air is given by $\begin{equation*} \frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \tag{i} \end{equation*}$ If n^{\prime} is refractive index of the material of the lens w.r.t. liquid, then focal length of the lens, when placed in liquid is given by $\begin{equation*} \frac{1}{f^{\prime}}=\left(n^{\prime}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \tag{ii} \end{equation*}$ From the equations (i) and (ii), we have $\frac{f^{\prime}}{f}=\frac{(n-1)}{\left(n^{\prime}-1\right)}$ Since $n^{\prime}<\mathrm{n}, f^{\prime}>\mathrm{f}$ i.e. focal length of the lens will increase on immersing it in liquid.	2
26.		1.5+1.5

	$\begin{aligned} & \oint \vec{B} \cdot \overrightarrow{d l}=\mu_{0} I_{\text {endosed }} \\ & \frac{I_{\text {enclosed }}}{\pi a^{2}}=\frac{I}{\pi r^{2}} \\ & I_{\text {encolsed }}=I \frac{r^{2}}{a^{2}} \\ & \vec{B} \cdot \overrightarrow{d l}=B d l \quad(\because \cos \theta=1) \\ & \therefore \oint B d l=\mu_{0} I \frac{r^{2}}{a^{2}} \\ & B \oint d l=\mu_{0} I \frac{r^{2}}{a^{2}} \\ & B(2 \pi r)=\mu_{0} I \frac{r^{2}}{a^{2}} \\ & B=\frac{\mu_{0}}{2 \pi} \frac{I}{a^{2}} r \end{aligned}$ (ii) For $r>a$ From Ampere's circuital law, $\begin{aligned} & \oint \vec{B} \cdot \overrightarrow{d l}=\mu_{0} I_{\text {enclosed }} \\ & \vec{B} \cdot \overrightarrow{d l}=B d l \cos \theta \\ & \theta=0 \\ & \vec{B} \cdot \overrightarrow{d l}=B d l \\ & I_{\text {enclosed }}=I \\ & \oint B d I=\mu_{0} I \\ & B \oint d l=\mu_{0} I \\ & B(2 \pi r)=\mu_{0} I \\ & B=\frac{\mu_{0}}{2 \pi} \frac{I}{r} \end{aligned}$	
27.	(i) When R is increased, the potential gradient decreases and $V_{A X}=\phi l_{A X}$ Due to decrease in ' ϕ ', the length ' $l_{A X}$ ' will increase. Hence the balance point	1+1+1

| will shifted towards B. |
| :--- | :--- | :--- |
| (ii) Balance point is not affected because no current drawn from cell Q at |
| the balance point. |
| (iii) The Balance point is not found on wire because the potential drop |
| across wire is less than the emf of cell Q. |
| OR |

	$\begin{aligned} & \text { Therefore work function of } \mathrm{Q} \text { is } \\ & \mathrm{W}_{0}=\mathrm{hv} 0=6.6 \times 10^{-34} \times 10^{15} / 1.6 \times 10^{-19} \mathrm{eV}= \\ & 4.125 \mathrm{eV} . \end{aligned}$ OR (I) No the different electrons belonging to different energy level in the conduction band they need different energy to come out of the metal surface for the same incident radiation electrons knocked off from different energy levels come out with different energies. (II) No the kinetic energy of photoelectron depends on the energy of each incident Photon and not on the number of photons are intensity of light. (III) Number of photoelectrons emitted depends on the intensity of incident light. larger the intensity of incident radiation larger is the number of incident photons and hence larger is the number of electrons ejected from the metal surface.	
29.	(i) The negative sigh shows that the electron is bound to nucleus by means of electrostatic attraction. $\begin{aligned} & \text { (ii) } \mathrm{E}_{1}=-13.6 \mathrm{eV} \\ & \mathrm{E}_{2}=-13.622=-3.4 \mathrm{eV} \\ & \text { Required energy }=\mathrm{E}_{2}-\mathrm{E}_{1}=-3.4-(-13.6)=10.2 \mathrm{eV} \end{aligned}$	1+2
30.	$\begin{gathered} \text { Find } \Delta \mathrm{m} \text { using } \\ \Delta \mathrm{m}=(7 \mathrm{x} 1.00783+7 \mathrm{x} 1.00867-14.003074) \mathrm{U} \\ \text { Calculate } \Delta \mathrm{E}_{\mathrm{b}}=\Delta \mathrm{m} \times 931.5 \mathrm{MeV} \end{gathered}$	3
31.	a) At point $\mathrm{A}, \sigma / 2 \varepsilon o$ towards plate A At point $B, 3 \sigma / 2 \varepsilon o$ towards plate B b) Correct answer Correct answer Correct answer OR Correct definition Correct derivation Potential energy $=-4 \mathrm{~J}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \\ & 1 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$
32.	Let an alternating $\mathrm{Emf} \mathrm{E}=\mathrm{E}_{0} \sin \omega t$ is applied to a series combination of inductor L, capacitor C and resistance R. Since all three of them are connected in series the current through them is same. But the voltage across each element has a different phase relation with current.	

The potential difference $\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{C}}$ and V_{R} across L, C and R at any instant is given by
$\mathrm{V}_{\mathrm{L}}=\mathrm{I} \mathrm{X}_{\mathrm{L}}, \mathrm{V}_{\mathrm{C}}=\mathrm{I} \mathrm{X}_{\mathrm{C}}$ and $\mathrm{V}_{\mathrm{R}}=\mathrm{I}_{\mathrm{R}}$
Where I is the current at that instant.
X_{L} is inductive reactance and
X_{C} is capacitive reactance.
V_{R} is in phase with $\mathrm{I} . \mathrm{V}_{\mathrm{L}}$ leads I by 90° and V_{C} lags behind I by 90°

In the phases diagram,
V_{L} and V_{C} are opposite to each other. If $\mathrm{V}_{\mathrm{L}}>\mathrm{V}_{\mathrm{C}}$ then resultant $\left(\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{C}}\right)$ is represent by OD. OR represent the resultant of V_{R} and $\left(V_{L}-V_{C}\right)$. It is equal to the applied Emf E.

$$
\begin{aligned}
& \mathrm{E}^{2}=\mathrm{V}_{\mathrm{R}}^{2}+\left(\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{C}}\right)^{2} \\
& \mathrm{E}^{2}=\mathrm{I}^{2}+\left[\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}\right] \\
& \text { or } \mathrm{I}=\frac{\mathrm{E}}{\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{2}-\mathrm{X}_{\mathrm{C}}\right)^{2}}}
\end{aligned}
$$

The term $\sqrt{R^{2}+\left(X_{2}-X_{C}\right)^{2}}$ is called impedance Z of the LCR circuit.
$Z=\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{2}-\mathrm{X}_{\mathrm{C}}\right)^{2}}=\sqrt{\mathrm{R}^{2}+\left(L \omega-\frac{1}{c \omega}\right)^{2}}$
Emf leads current by a phase angle ϕ
$\tan \phi=\frac{\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{C}}}{\mathrm{R}}=\frac{\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}}{\mathrm{R}}=\frac{\mathrm{L} \omega-\frac{1}{c \omega}}{\mathrm{R}}$
Required graph

	When resonance takes place $\omega \mathrm{L}=\frac{1}{\omega c}$ Impedance of circuit becomes equal to R. Current becomes maximum and is equal to E / R OR (a) Self Inductance of a long air-cored solemoidt Consider a long air solenoid having of number of turns per unit length. If current in solenoid is L, then magretic field within the solenoid, $\$=\mu_{0} \mathrm{nl}$ where $\mu_{0}=4 \pi \times 10^{-7}$ heenry/metre is the permestrility of free space If A is cross-sectional aress of solemoid, then effecteve flus linked with solenoid of $\therefore \quad$ T $-(\mathrm{mH} / 8, \mathrm{~A})$ Subetituting the value of E from (1) $\begin{equation*} \left.\Phi=m \omega_{0} n i\right) A=\mu_{0} m^{2} \quad A l \tag{-12} \end{equation*}$ \therefore Self-inductance of air solenoid $L=\frac{\phi}{t}=\mu_{0} m^{2} A l$ If N is tolal number of turns in length l, then $\begin{aligned} & \Lambda=\frac{N}{l} \\ & \therefore \text { Self-inductance } \quad L=\mu_{0}\left(\frac{N}{l}\right)^{2} A! \\ &=\frac{\mu_{0} N^{2} A}{l} \end{aligned}$ (b) The given situation can be shown as: Let θ be the angle traced by the free end of the rod in time t. The area swept-out by the rod in time t is given as: $\begin{equation*} A=\pi l^{2} \times\left(\frac{\theta}{2 \pi}\right)=\frac{l^{2} \theta}{2} \tag{1} \end{equation*}$ Since the angle between the area vector and the magnetic field vector is zero, the magnetic flux linked to this area is given as: $\begin{array}{rlrl} \phi & =B\left(\frac{1}{2} l^{2} \theta\right) \cos 0^{\circ} & {[\because \text { Flux, } \phi=B A \cos \theta]} \\ & =\frac{1}{2} B l^{2} \theta & & {\left[\because \cos 0^{\circ}=1\right]} \end{array}$ According to Faraday's laws of electromagnetic induction, induced $\operatorname{emf}(e)$ is given as: $e=\frac{d \phi}{d t}=\frac{d}{d t}\left(\frac{1}{2} B l^{2} \theta\right)=\frac{1}{2} B l^{2} \omega \quad\left[\because \omega=\frac{d \theta}{d t}\right]$ Hence, the current induced in the rod is given as: $I=\frac{e}{R}=\frac{\frac{1}{2} B l^{2} \omega}{R}=\frac{B l^{2} \omega}{2 R}$	2
33.	Ray Diagram Correct Derivation	1 Marks 2 marks

	Correct solution radius of curvature	2
	Or	marks
	Ray Diagram	2 marks
	Formula	1 marks
	Correct Solution of Numerical	$1+1$

BLUEPRINT 2020-21

UNIT NAME	VSA/AssertionReason type (1 MARK)	Case study based (4 marks)	SA1 (2 MARKS)	SAII (3 MARKS)	LA (5 MARKS)	TOTAL
ELECTROSTATICS	2 (2)		1(2)		1(5)	5(12)
CURRENT ELECTRICITY				1(3)		
MAGNETIC EFFECTS OF CURRENT AND MAGNETISM	2 (2)		2(4)	1(3)		9(21)
ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT	1 (1)	1(4)	1(2)		1(5)	
ELECTROMAGNETIC WAVES	1 (1)					8(18)
OPTICS	2 (2)	1(4)	3(6)		1(5)	
DUAL NATURE OF MATTER	1 (1)			1(3)		6(12)
ATOMS AND NUCLEI	2 (2)			2(6)		
ELECTRONIC DEVICES	3 (3)		2(4)			5(7)
TOTAL	14(14)	2(8)	9(18)	5 (15)	3(15)	33(70)

